Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Vascular biology

  • 230 Articles
  • 8 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →
Tentonin 3/TMEM150C senses blood pressure changes in the aortic arch
Huan-Jun Lu, … , Mi-Ock Lee, Uhtaek Oh
Huan-Jun Lu, … , Mi-Ock Lee, Uhtaek Oh
Published June 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133798.
View: Text | PDF

Tentonin 3/TMEM150C senses blood pressure changes in the aortic arch

  • Text
  • PDF
Abstract

The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch. TTN3 was expressed in nerve terminals in the aortic arch and nodose ganglion (NG) neurons. Genetic ablation of Ttn3 induced ambient hypertension, tachycardia, AP fluctuations, and impaired baroreflex sensitivity. Chemogenetic silencing or activation of Ttn3+ neurons in the NG resulted in an increase in AP and heart rate, or vice versa. More important, overexpression of Ttn3 in the NG of Ttn3–/– mice reversed the cardiovascular changes observed in Ttn3–/– mice. We conclude that TTN3 is a molecular component contributing to the sensing of dynamic AP changes in baroreceptors.

Authors

Huan-Jun Lu, Thien-Luan Nguyen, Gyu-Sang Hong, Sungmin Pak, Hyesu Kim, Hyungsup Kim, Dong-Yoon Kim, Sung-Yon Kim, Yiming Shen, Pan Dong Ryu, Mi-Ock Lee, Uhtaek Oh

×

Selective role of Nck1 in atherogenic inflammation and plaque formation
Mabruka Alfaidi, … , James G. Traylor, A. Wayne Orr
Mabruka Alfaidi, … , James G. Traylor, A. Wayne Orr
Published May 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135552.
View: Text | PDF

Selective role of Nck1 in atherogenic inflammation and plaque formation

  • Text
  • PDF
Abstract

While Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) established the role of treating inflammation in atherosclerosis, our understanding of endothelial activation at atherosclerosis-prone sites remains limited. Disturbed flow at atheroprone regions primes plaque inflammation by enhancing endothelial NF-κB signaling. Herein, we demonstrate a role for the Nck adaptor proteins in disturbed flow-induced endothelial activation. Although highly similar, only Nck1 deletion, but not Nck2 deletion, limited flow-induced NF-κB activation and proinflammatory gene expression. Nck1 knockout mice showed reduced endothelial activation and inflammation in both models of disturbed flow and high fat diet-induced atherosclerosis, whereas Nck2 deletion did not. Bone marrow chimeras confirmed that vascular Nck1, but not hematopoietic Nck1, mediated this effect. Domain swap experiments and point mutations identified the Nck1 SH2 domain and the first SH3 domain as critical for flow-induced endothelial activation. We further characterized Nck1’s proinflammatory role by identifying interleukin-1 type I receptor kinase-1 (IRAK-1) as a Nck1-selective binding partner, demonstrating IRAK-1 activation by disturbed flow required Nck1 in vitro and in vivo, showing endothelial Nck1 and IRAK-1 staining in early human atherosclerosis, and demonstrating that disturbed flow-induced endothelial activation required IRAK-1. Taken together, our data reveal a hitherto unknown link between Nck1 and IRAK-1 in atherogenic inflammation.

Authors

Mabruka Alfaidi, Christina H. Acosta, Dongdong Wang, James G. Traylor, A. Wayne Orr

×

Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction
Paul J. Meakin, … , Faisel Khan, Michael LJ Ashford
Paul J. Meakin, … , Faisel Khan, Michael LJ Ashford
Published May 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI122237.
View: Text | PDF

Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction

  • Text
  • PDF
Abstract

Diabetes, obesity and Alzheimer’s disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), APP and β-amyloid (Aβ) are linked with vascular disease development and raised BACE1 and Aβ accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, raised Aβ and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice raised plasma and vascular Aβ42 that correlated with decreased NO bioavailability, endothelial dysfunction and raised blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aβ42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aβ42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation and raised blood pressure. In humans, raised plasma Aβ42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aβ42 reduced endothelial NO synthase (eNOS), cyclic GMP and protein kinase G (PKG) activity independently of diet whereas endothelin-1 was increased by diet and Aβ42. Lowering Aβ42 reversed the DIO deficit in the eNOS-cGMP-PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.

Authors

Paul J. Meakin, Bethany M. Coull, Zofia Tuharska, Christopher McCaffery, Ioannis Akoumianakis, Charalambos Antoniades, Jane Brown, Kathryn J. Griffin, Fiona Platt, Claire H. Ozber, Nadira Y. Yuldasheva, Natallia Makava, Anna Skromna, Alan Russell Prescott, Alison D. McNeilly, Moneeza K. Siddiqui, Colin Neil Alexander Palmer, Faisel Khan, Michael LJ Ashford

×

Deficiency of MFSD7c results in microcephaly-associated vasculopathy in Fowler syndrome
Pazhanichamy Kalailingam, … , Karin Weiss, Long N. Nguyen
Pazhanichamy Kalailingam, … , Karin Weiss, Long N. Nguyen
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136727.
View: Text | PDF

Deficiency of MFSD7c results in microcephaly-associated vasculopathy in Fowler syndrome

  • Text
  • PDF
Abstract

Several missense mutations in the orphan transporter FLVCR2 have been reported in Fowler syndrome. Affected subjects exhibit signs of severe neurological defects. We identified the mouse ortholog Mfsd7c as a gene, which is expressed in the blood brain barrier. Here, we report the characterizations of Mfsd7c knockout (KO) mice and compare it to phenotypic findings in humans with bi-allelic FLVCR2 mutations. Global KO of Mfsd7c in mice resulted in late gestation lethality, likely due to central nervous system (CNS) phenotypes. We found that the angiogenic growth of CNS blood vessels in the brain of Mfsd7c KO embryos was inhibited in cortical ventricular zones and ganglionic eminences. Vascular tips were dilated and fused resulting in glomeruloid vessels. Nonetheless, CNS blood vessels were intact without haemorrhage. Both embryos and humans with bi-allelic FLVCR2 mutations exhibited reduced cerebral cortical layers, enlargement of the cerebral ventricles, and microcephaly. Transcriptomic analysis of Mfsd7c knockout (KO) embryonic brains revealed upregulation of genes involved in glycolysis and angiogenesis. The Mfsd7c KO brain exhibited hypoxia and neuronal cell death. Our results indicate MFSD7c is required for the normal growth of CNS blood vessels and ablation of this gene results in microcephaly-associated vasculopathy in mice and humans.

Authors

Pazhanichamy Kalailingam, Kai Qi Wang, Xiu Ru Toh, Toan Q. Nguyen, Madhuvanthi Chandrakanthan, Zafrul Hasan, Clair Habib, Aharon Schif, Francesca Clementina Radio, Bruno Dallapiccola, Karin Weiss, Long N. Nguyen

×

Impaired angiogenesis and extracellular matrix metabolism in Autosomal-Dominant Hyper-IgE Syndrome
Natalia I. Dmitrieva, … , Guibin Chen, Manfred Boehm
Natalia I. Dmitrieva, … , Guibin Chen, Manfred Boehm
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135490.
View: Text | PDF

Impaired angiogenesis and extracellular matrix metabolism in Autosomal-Dominant Hyper-IgE Syndrome

  • Text
  • PDF
Abstract

There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, Job’s syndrome) is caused by mutations in signal transducer and activator of transcription 3 (STAT3). These patients present with immunodeficiency accompanied by severe non-immunological features including skeletal, connective tissue and vascular abnormalities, poor post-infection lung healing, and subsequent pulmonary failure. No specific therapies are available for these abnormalities. Here we investigated underlying mechanisms in order to identify therapeutic targets. Histological analysis of skin wounds demonstrated delayed granulation tissue formation and vascularization during skin wound healing in AD-HIES patients. Global gene expression analysis in AD-HIES patient skin fibroblasts identified deficiencies in a STAT3 controlled transcriptional network regulating extracellular matrix (ECM) remodeling and angiogenesis, with hypoxia inducible factor 1α (HIF1α) being a major contributor. Consistent with this, histological analysis of skin wounds and coronary arteries from AD-HIES patients showed decreased HIF1α expression, and revealed abnormal organization of the ECM and altered formation of the coronary vasa vasorum. Disease modeling utilizing cell culture and mouse models of angiogenesis and wound healing confirmed these predicted deficiencies and demonstrated therapeutic benefit of HIF1α stabilizing drugs. The study provides mechanistic insights into AD-HIES pathophysiology and finds new treatment option for this rare disease.

Authors

Natalia I. Dmitrieva, Avram D. Walts, Dai P. Nguyen, Alex Grubb, Xue Zhang, Xujing Wang, Xianfeng Ping, Hui Jin, Zhen Yu, Zu-Xi Yu, Dan Yang, Robin Schwartzbeck, Clifton L. Dalgard, Beth A. Kozel, Mark D. Levin, Russell H. Knutsen, Delong Liu, Joshua D. Milner, Diego B. López, Michael P. O'Connell, Chyi-Chia R. Lee, Ian A. Myles, Amy P. Hsu, Alexandra F. Freeman, Steven M. Holland, Guibin Chen, Manfred Boehm

×

IL-1β Suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury
Shiqin Xiong, … , Jalees Rehman, Asrar B. Malik
Shiqin Xiong, … , Jalees Rehman, Asrar B. Malik
Published April 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136908.
View: Text | PDF

IL-1β Suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury

  • Text
  • PDF
Abstract

Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced polymicrobial sepsis decreased the expression of transcription factor cAMP Response Element Binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1β reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits PDE4-mediated hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.

Authors

Shiqin Xiong, Zhigang Hong, Long Shuang Huang, Yoshikazu Tsukasaki, Saroj Nepal, Anke Di, Ming Zhong, Wei Wu, Zhiming Ye, XiaoPei Gao, Gadiparthi Rao, Dolly Mehta, Jalees Rehman, Asrar B. Malik

×

Atypical cadherin Fat4 orchestrates lymphatic endothelial cell polarity in response to flow
Kelly L. Betterman, … , Helen McNeill, Natasha L. Harvey
Kelly L. Betterman, … , Helen McNeill, Natasha L. Harvey
Published March 17, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI99027.
View: Text | PDF

Atypical cadherin Fat4 orchestrates lymphatic endothelial cell polarity in response to flow

  • Text
  • PDF
Abstract

The atypical cadherin FAT4 has established roles in regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in CCBE1 and ADAMTS3, encoding a matrix protein and protease, respectively, that regulate activity of the key pro-lymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1 and ADAMTS3 mutations underlie Hennekam syndrome suggested that all three genes might function in a common pathway. We identified FAT4 as a target gene of GATA2, a key transcriptional regulator of lymphatic vascular development and in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.

Authors

Kelly L. Betterman, Drew L. Sutton, Genevieve A. Secker, Jan Kazenwadel, Anna Oszmiana, Lillian Lim, Naoyuki Miura, Lydia Sorokin, Benjamin M. Hogan, Mark L. Kahn, Helen McNeill, Natasha L. Harvey

×

Chronic mTOR activation induces a degradative smooth muscle cell phenotype
Guangxin Li, … , Jay D. Humphrey, George Tellides
Guangxin Li, … , Jay D. Humphrey, George Tellides
Published February 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131048.
View: Text | PDF

Chronic mTOR activation induces a degradative smooth muscle cell phenotype

  • Text
  • PDF
Abstract

Smooth muscle cell (SMC) proliferation has been thought to limit the progression of thoracic aortic aneurysm and dissection (TAAD) because loss of medial cells associates with advanced disease. We investigated effects of SMC proliferation in the aortic media by conditional disruption of Tsc1, which hyperactivates mTOR complex 1. Consequent SMC hyperplasia led to progressive medial degeneration and TAAD. In addition to diminished contractile and synthetic functions, fate-mapped SMCs displayed increased proteolysis, endocytosis, phagocytosis, and lysosomal clearance of extracellular matrix and apoptotic cells. SMCs acquired a limited repertoire of macrophage markers and functions via biogenesis of degradative organelles through an mTOR/β-catenin/MITF–dependent pathway, but were distinguishable from conventional macrophages by an absence of hematopoietic lineage markers and certain immune effectors even in the context of hyperlipidemia. Similar mTOR activation and induction of a degradative SMC phenotype in a model of mild TAAD due to Fbn1 mutation greatly worsened disease with near-uniform lethality. The finding of increased lysosomal markers in medial SMCs from clinical TAAD specimens with hyperplasia and matrix degradation further supports the concept that proliferation of degradative SMCs within the media causes aortic disease, thus identifying mTOR-dependent phenotypic modulation as a therapeutic target for combating TAAD.

Authors

Guangxin Li, Mo Wang, Alexander W. Caulk, Nicholas A. Cilfone, Sharvari Gujja, Lingfeng Qin, Pei-Yu Chen, Zehua Chen, Sameh Yousef, Yang Jiao, Changshun He, Bo Jiang, Arina Korneva, Matthew R. Bersi, Guilin Wang, Xinran Liu, Sameet Mehta, Arnar Geirsson, Jeffrey R. Gulcher, Thomas W. Chittenden, Michael Simons, Jay D. Humphrey, George Tellides

×

Local microvascular leakage promotes trafficking of activated neutrophils to remote organs
Charlotte Owen-Woods, … , Mathieu-Benoit Voisin, Sussan Nourshargh
Charlotte Owen-Woods, … , Mathieu-Benoit Voisin, Sussan Nourshargh
Published January 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133661.
View: Text | PDF

Local microvascular leakage promotes trafficking of activated neutrophils to remote organs

  • Text
  • PDF
Abstract

Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Whilst neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we reported that vascular permeability enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the blood stream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labelling method we provided direct evidence for the systemic dissemination of rTEM neutrophils, showed them to exhibit an activated phenotype and capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrated that increased microvascular leakage reverses the localisation of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to re-enter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.

Authors

Charlotte Owen-Woods, Régis Joulia, Anna Barkaway, Loïc Rolas, Bin Ma, Astrid Fee Nottebaum, Kenton P. Arkill, Monja Stein, Tamara Girbl, Matthew Golding, David O. Bates, Dietmar Vestweber, Mathieu-Benoit Voisin, Sussan Nourshargh

×

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity
Conor McClenaghan, … , Maria S. Remedi, Colin G. Nichols
Conor McClenaghan, … , Maria S. Remedi, Colin G. Nichols
Published December 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130571.
View: Text | PDF

Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by KATP channel overactivity

  • Text
  • PDF
Abstract

Cantu Syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knock-in mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved (1) by genetic downregulation of KATP channel activity specifically in VSM, and (2) by chronic administration of the clinically-used KATP channel inhibitor, glibenclamide. These findings demonstrate (i) that VSM KATP channel GoF underlies CS cardiac enlargement, (ii) reversibility of CS-associated abnormalities and (iii) evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.

Authors

Conor McClenaghan, Yan Huang, Zihan Yan, Theresa Harter, Carmen M. Halabi, Rod Chalk, Attila Kovacs, Gijs van Haaften, Maria S. Remedi, Colin G. Nichols

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 22
  • 23
  • Next →
MiR-33 fine-tunes atherosclerotic plaque inflammation
Mireille Ouimet, Hasini Ediriweera, and colleagues show that miR-33 controls the macrophage inflammatory program and promotes atherosclerotic plaque development…
Published October 26, 2015
Scientific Show StopperVascular biology

Contracting lacteals send lipids down the drain
Kibaek Choe, Jeon Yeob Jang, Intae Park and colleagues visualize lipid drainage through lacteals using intravital, video-rate microscopy…
Published October 5, 2015
Scientific Show StopperVascular biology

FOXC2 keeps lymphatic vessels leak-proof
Amélie Sabine and colleagues demonstrate that disturbed flow in lymphatic vasculature induces expression of the transcription factor FOXC2, which is essential for maintaining normal endothelial cell morphology and vessel integrity…
Published September 21, 2015
Scientific Show StopperVascular biology

Venous malformation model provides therapeutic insight
Elisa Boscolo and colleagues develop a murine model of venous malformation and demonstrate that rapamycin improves clinical symptoms of in this model and in patients…
Published August 10, 2015
Scientific Show StopperVascular biology

Lymphatic valves grow with the flow
Daniel Sweet and colleagues reveal that lymph flow is essential for lymphatic vessel maturation…
Published July 27, 2015
Scientific Show StopperVascular biology

GATA2 serves as a lymphatic rheostat
Jan Kazenwadel, Kelly Betterman, and colleagues reveal that the transcription factor GATA2 is essential for lymphatic valve development and maintenance…
Published July 27, 2015
Scientific Show StopperVascular biology

Factoring in factor XII in hereditary angioedema III
Jenny Björkqvist and colleagues elucidate the mechanism by which hereditary angioedema III-associated factor XII promotes vascular leakage…
Published July 20, 2015
Scientific Show StopperVascular biology

Regional regulation of atherosclerosis
Yogendra Kanthi, Matthew Hyman, and colleagues reveal that CD39 is regulated by blood flow and is protective against atherosclerosis…
Published June 29, 2015
Scientific Show StopperVascular biology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts