Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Reproductive biology

  • 74 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • Next →
Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice
Manyu Li, … , Oliver Smithies, Kathleen M. Caron
Manyu Li, … , Oliver Smithies, Kathleen M. Caron
Published October 2, 2006
Citation Information: J Clin Invest. 2006;116(10):2653-2662. https://doi.org/10.1172/JCI28462.
View: Text | PDF

Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice

  • Text
  • PDF
Abstract

Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. Plasma AM expression dramatically increases during pregnancy, and alterations in its levels are associated with complications of pregnancy including fetal growth restriction (FGR) and preeclampsia. Using AM+/– female mice with genetically reduced AM expression, we demonstrate that fetal growth and placental development are seriously compromised by this modest decrease in expression. AM+/– female mice had reduced fertility characterized by FGR. The incidence of FGR was also influenced by the genotype of the embryo, since AM–/– embryos were more often affected than either AM+/– or AM+/+ embryos. We demonstrate that fetal trophoblast cells and the maternal uterine wall have coordinated and localized increases in AM gene expression at the time of implantation. Placentas from growth-restricted embryos showed defects in trophoblast cell invasion, similar to defects that underlie human preeclampsia and placenta accreta. Our data provide a genetic in vivo model to implicate both maternal and, to a lesser extent, embryonic levels of AM in the processes of implantation, placentation, and subsequent fetal growth. This study provides the first genetic evidence to our knowledge to suggest that a modest reduction in human AM expression during pregnancy may have an unfavorable impact on reproduction.

Authors

Manyu Li, Della Yee, Terry R. Magnuson, Oliver Smithies, Kathleen M. Caron

×

Fatty acid amide hydrolase deficiency limits early pregnancy events
Haibin Wang, … , Benjamin F. Cravatt, Sudhansu K. Dey
Haibin Wang, … , Benjamin F. Cravatt, Sudhansu K. Dey
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2122-2131. https://doi.org/10.1172/JCI28621.
View: Text | PDF

Fatty acid amide hydrolase deficiency limits early pregnancy events

  • Text
  • PDF
Abstract

Synchronized preimplantation embryo development and passage through the oviduct into the uterus are prerequisites for implantation, dysregulation of which often leads to pregnancy failure in women. Cannabinoid/endocannabinoid signaling via cannabinoid receptor CB1 is known to influence early pregnancy. Here we provide evidence that a critical balance between anandamide synthesis by N-acylphosphatidylethanolamine–selective phospholipase D (NAPE-PLD) and its degradation by fatty acid amide hydrolase (FAAH) in mouse embryos and oviducts creates locally an appropriate “anandamide tone” for normal development of embryos and their oviductal transport. FAAH inactivation yielding higher anandamide or experimentally induced higher cannabinoid [(-)-Δ9-tetrahydrocannabinol] levels constrain preimplantation embryo development with aberrant expression of Cdx2, Nanog, and Oct3/4, genes known to direct lineage specification. Defective oviductal embryo transport arising from aberrant endocannabinoid signaling also led to deferred on-time implantation and poor pregnancy outcome. Intercrossing between wild-type and Faah–/– mice rescued developmental defects, not oviductal transport, implying that embryonic and maternal FAAH plays differential roles in these processes. The results suggest that FAAH is a key metabolic gatekeeper, regulating on-site anandamide tone to direct preimplantation events that determine the fate of pregnancy. This study uncovers what we believe to be a novel regulation of preimplantation processes, which could be clinically relevant for fertility regulation in women.

Authors

Haibin Wang, Huirong Xie, Yong Guo, Hao Zhang, Toshifumi Takahashi, Philip J. Kingsley, Lawrence J. Marnett, Sanjoy K. Das, Benjamin F. Cravatt, Sudhansu K. Dey

×

Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia
Kazutoshi Fujita, … , Teruhiko Wakayama, Akihiko Okuyama
Kazutoshi Fujita, … , Teruhiko Wakayama, Akihiko Okuyama
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1855-1861. https://doi.org/10.1172/JCI24189.
View: Text | PDF

Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia

  • Text
  • PDF
Abstract

More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia.

Authors

Kazutoshi Fujita, Hiroshi Ohta, Akira Tsujimura, Tetsuya Takao, Yasushi Miyagawa, Shingo Takada, Kiyomi Matsumiya, Teruhiko Wakayama, Akihiko Okuyama

×

Cyclic nucleotide phosphodiesterase 3A–deficient mice as a model of female infertility
Silvia Masciarelli, … , Marco Conti, Vincent Manganiello
Silvia Masciarelli, … , Marco Conti, Vincent Manganiello
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):196-205. https://doi.org/10.1172/JCI21804.
View: Text | PDF

Cyclic nucleotide phosphodiesterase 3A–deficient mice as a model of female infertility

  • Text
  • PDF
Abstract

Since cAMP blocks meiotic maturation of mammalian and amphibian oocytes in vitro and cyclic nucleotide phosphodiesterase 3A (PDE3A) is primarily responsible for oocyte cAMP hydrolysis, we generated PDE3A-deficient mice by homologous recombination. The Pde3a–/– females were viable and ovulated a normal number of oocytes but were completely infertile, because ovulated oocytes were arrested at the germinal vesicle stage and, therefore, could not be fertilized. Pde3a–/– oocytes lacked cAMP-specific PDE activity, contained increased cAMP levels, and failed to undergo spontaneous maturation in vitro (up to 48 hours). Meiotic maturation in Pde3a–/– oocytes was restored by inhibiting protein kinase A (PKA) with adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS) or by injection of protein kinase inhibitor peptide (PKI) or mRNA coding for phosphatase CDC25, which confirms that increased cAMP-PKA signaling is responsible for the meiotic blockade. Pde3a–/– oocytes that underwent germinal vesicle breakdown showed activation of MPF and MAPK, completed the first meiotic division extruding a polar body, and became competent for fertilization by spermatozoa. We believe that these findings provide the first genetic evidence indicating that resumption of meiosis in vivo and in vitro requires PDE3A activity. Pde3a–/– mice represent an in vivo model where meiotic maturation and ovulation are dissociated, which underscores inhibition of oocyte maturation as a potential strategy for contraception.

Authors

Silvia Masciarelli, Kathleen Horner, Chengyu Liu, Sun Hee Park, Mary Hinckley, Steven Hockman, Taku Nedachi, Catherine Jin, Marco Conti, Vincent Manganiello

×
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • Next →
Protection against preterm labor
Yucel Akgul and colleagues reveal that the glycosaminoglycan hyaluronan is necessary for barrier function in the lower reproductive tract and protects against pathogen-induced preterm birth...
Published November 10, 2014
Scientific Show StopperReproductive biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts