Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Bone biology

  • 169 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • …
  • 16
  • 17
  • Next →
Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model
Davide Komla-Ebri, … , Martin Biosse-Duplan, Laurence Legeai-Mallet
Davide Komla-Ebri, … , Martin Biosse-Duplan, Laurence Legeai-Mallet
Published April 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83926.
View: Text | PDF

Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model

  • Text
  • PDF
Abstract

Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.

Authors

Davide Komla-Ebri, Emilie Dambroise, Ina Kramer, Catherine Benoist-Lasselin, Nabil Kaci, Cindy Le Gall, Ludovic Martin, Patricia Busca, Florent Barbault, Diana Graus-Porta, Arnold Munnich, Michaela Kneissel, Federico Di Rocco, Martin Biosse-Duplan, Laurence Legeai-Mallet

×

Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis
Jason S. Rockel, … , Gordon M. Keller, Benjamin A. Alman
Jason S. Rockel, … , Gordon M. Keller, Benjamin A. Alman
Published March 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80205.
View: Text | PDF

Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis

  • Text
  • PDF
Abstract

Both the WNT/β-catenin and hedgehog signaling pathways are important in the regulation of limb development, chondrocyte differentiation, and degeneration of articular cartilage in osteoarthritis (OA). It is not clear how these signaling pathways interact in interzone cell differentiation and synovial joint morphogenesis. Here, we determined that constitutive activation of hedgehog signaling specifically within interzone cells induces joint morphological changes by selectively inhibiting β-catenin–induced Fgf18 expression. Stabilization of β-catenin or treatment with FGF18 rescued hedgehog-induced phenotypes. Hedgehog signaling induced expression of a dominant negative isoform of TCF7L2 (dnTCF7L2) in interzone progeny, which may account for the selective regulation of β-catenin target genes observed. Knockdown of TCF7L2 isoforms in mouse chondrocytes rescued hedgehog signaling–induced Fgf18 downregulation, while overexpression of the human dnTCF7L2 orthologue (dnTCF4) in human chondrocytes promoted the expression of catabolic enzymes associated with OA. Similarly, expression of dnTCF4 in human chondrocytes positively correlated with the aggrecanase ADAMTS4. Consistent with our developmental findings, activation of β-catenin also attenuated hedgehog-induced or surgically induced articular cartilage degeneration in mouse models of OA. Thus, our results demonstrate that hedgehog inhibits selective β-catenin target gene expression to direct interzone progeny fates and articular cartilage development and disease. Moreover, agents that increase β-catenin activity have the potential to therapeutically attenuate articular cartilage degeneration as part of OA.

Authors

Jason S. Rockel, Chunying Yu, Heather Whetstone, April M. Craft, Katherine Reilly, Henry Ma, Hidetoshi Tsushima, Vijitha Puviindran, Mushriq Al-Jazrawe, Gordon M. Keller, Benjamin A. Alman

×

NOTCH signaling in skeletal progenitors is critical for fracture repair
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Published March 7, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80672.
View: Text | PDF

NOTCH signaling in skeletal progenitors is critical for fracture repair

  • Text
  • PDF
Abstract

Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.

Authors

Cuicui Wang, Jason A. Inzana, Anthony J. Mirando, Yinshi Ren, Zhaoyang Liu, Jie Shen, Regis J. O’Keefe, Hani A. Awad, Matthew J. Hilton

×

Measles virus nucleocapsid protein increases osteoblast differentiation in Paget’s disease
Jumpei Teramachi, … , Noriyoshi Kurihara, G. David Roodman
Jumpei Teramachi, … , Noriyoshi Kurihara, G. David Roodman
Published February 15, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82012.
View: Text | PDF

Measles virus nucleocapsid protein increases osteoblast differentiation in Paget’s disease

  • Text
  • PDF
Abstract

Paget’s disease (PD) is characterized by focal and dramatic bone resorption and formation. Treatments that target osteoclasts (OCLs) block both pagetic bone resorption and formation; therefore, PD offers key insights into mechanisms that couple bone resorption and formation. Here, we evaluated OCLs from 3 patients with PD and determined that measles virus nucleocapsid protein (MVNP) was expressed in 70% of these OCLs. Moreover, transgenic mice with OCL-specific expression of MVNP (MVNP mice) developed PD-like bone lesions that required MVNP-dependent induction of high IL-6 expression levels in OCLs. In contrast, mice harboring a knockin of p62P394L (p62-KI mice), which is the most frequent PD-associated mutation, exhibited increased bone resorption, but not formation. Evaluation of OCLs from MVNP, p62-KI, and WT mice revealed increased IGF1 expression in MVNP-expressing OCLs that resulted from the high IL-6 expression levels in these cells. IL-6, in turn, increased the expression of coupling factors, specifically ephrinB2 on OCLs and EphB4 on osteoblasts (OBs). IGF1 enhanced ephrinB2 expression on OCLs and OB differentiation. Importantly, ephrinB2 and IGF1 levels were increased in MVNP-expressing OCLs from patients with PD and MVNP-transduced human OCLs compared with levels detected in controls. Further, anti-IGF1 or anti-IGF1R blocked Runx2 and osteocalcin upregulation in OBs cocultured with MVNP-expressing OCLs. These results suggest that in PD, MVNP upregulates IL-6 and IGF1 in OCLs to increase ephrinB2-EphB4 coupling and bone formation.

Authors

Jumpei Teramachi, Yuki Nagata, Khalid Mohammad, Yuji Inagaki, Yasuhisa Ohata, Theresa Guise, Laëtitia Michou, Jacques P. Brown, Jolene J. Windle, Noriyoshi Kurihara, G. David Roodman

×

Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair
Kai Hu, Bjorn R. Olsen
Kai Hu, Bjorn R. Olsen
Published January 5, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82585.
View: Text | PDF

Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair

  • Text
  • PDF
Abstract

Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte–derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.

Authors

Kai Hu, Bjorn R. Olsen

×

The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity
Michal Dudek, … , Ray P. Boot-Handford, Qing-Jun Meng
Michal Dudek, … , Ray P. Boot-Handford, Qing-Jun Meng
Published December 14, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI82755.
View: Text | PDF

The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

  • Text
  • PDF
Abstract

Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.

Authors

Michal Dudek, Nicole Gossan, Nan Yang, Hee-Jeong Im, Jayalath P.D. Ruckshanthi, Hikari Yoshitane, Xin Li, Ding Jin, Ping Wang, Maya Boudiffa, Ilaria Bellantuono, Yoshitaka Fukada, Ray P. Boot-Handford, Qing-Jun Meng

×

Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification
Masato Yuasa, … , Justin M.M. Cates, Jonathan G. Schoenecker
Masato Yuasa, … , Justin M.M. Cates, Jonathan G. Schoenecker
Published July 27, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80313.
View: Text | PDF | Corrigendum

Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification

  • Text
  • PDF
Abstract

Bone formation during fracture repair inevitably initiates within or around extravascular deposits of a fibrin-rich matrix. In addition to a central role in hemostasis, fibrin is thought to enhance bone repair by supporting inflammatory and mesenchymal progenitor egress into the zone of injury. However, given that a failure of efficient fibrin clearance can impede normal wound repair, the precise contribution of fibrin to bone fracture repair, whether supportive or detrimental, is unknown. Here, we employed mice with genetically and pharmacologically imposed deficits in the fibrin precursor fibrinogen and fibrin-degrading plasminogen to explore the hypothesis that fibrin is vital to the initiation of fracture repair, but impaired fibrin clearance results in derangements in bone fracture repair. In contrast to our hypothesis, fibrin was entirely dispensable for long-bone fracture repair, as healing fractures in fibrinogen-deficient mice were indistinguishable from those in control animals. However, failure to clear fibrin from the fracture site in plasminogen-deficient mice severely impaired fracture vascularization, precluded bone union, and resulted in robust heterotopic ossification. Pharmacological fibrinogen depletion in plasminogen-deficient animals restored a normal pattern of fracture repair and substantially limited heterotopic ossification. Fibrin is therefore not essential for fracture repair, but inefficient fibrinolysis decreases endochondral angiogenesis and ossification, thereby inhibiting fracture repair.

Authors

Masato Yuasa, Nicholas A. Mignemi, Jeffry S. Nyman, Craig L. Duvall, Herbert S. Schwartz, Atsushi Okawa, Toshitaka Yoshii, Gourab Bhattacharjee, Chenguang Zhao, Jesse E. Bible, William T. Obremskey, Matthew J. Flick, Jay L. Degen, Joey V. Barnett, Justin M.M. Cates, Jonathan G. Schoenecker

×

IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis
Takahide Tohmonda, … , Yoshiaki Toyama, Keisuke Horiuchi
Takahide Tohmonda, … , Yoshiaki Toyama, Keisuke Horiuchi
Published July 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI76765.
View: Text | PDF

IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis

  • Text
  • PDF
Abstract

The unfolded protein response (UPR) is a cellular adaptive mechanism that is activated in response to the accumulation of unfolded proteins in the endoplasmic reticulum. The inositol-requiring protein-1α/X-box–binding protein–mediated (IRE1α/XBP1-mediated) branch of the UPR is highly conserved and has also been shown to regulate various cell-fate decisions. Herein, we have demonstrated a crucial role for the IREα/XBP1-mediated arm of the UPR in osteoclast differentiation. Using murine models, we found that the conditional abrogation of IRE1α in bone marrow cells increases bone mass as the result of defective osteoclastic bone resorption. In osteoclast precursors, IRE1α was transiently activated during osteoclastogenesis, and suppression of the IRE1α/XBP1 pathway in these cells substantially inhibited the formation of multinucleated osteoclasts in vitro. We determined that XBP1 directly binds the promoter and induces transcription of the gene encoding the master regulator of osteoclastogenesis nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, activation of IRE1α was partially dependent on Ca2+ oscillation mediated by inositol 1,4,5-trisphosphate receptors 2 and 3 (ITPR2 and ITPR3) in the endoplasmic reticulum, as pharmacological inhibition or deletion of these receptors markedly decreased Xbp1 mRNA processing. The present study thus reveals an intracellular pathway that integrates the UPR and osteoclast differentiation through activation of the IRE1α/XBP1 pathway.

Authors

Takahide Tohmonda, Masaki Yoda, Takao Iwawaki, Morio Matsumoto, Masaya Nakamura, Katsuhiko Mikoshiba, Yoshiaki Toyama, Keisuke Horiuchi

×

MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
Chang-Jun Li, … , Er-Yuan Liao, Xiang-Hang Luo
Chang-Jun Li, … , Er-Yuan Liao, Xiang-Hang Luo
Published March 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77716.
View: Text | PDF

MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation

  • Text
  • PDF
Abstract

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.

Authors

Chang-Jun Li, Peng Cheng, Meng-Ke Liang, Yu-Si Chen, Qiong Lu, Jin-Yu Wang, Zhu-Ying Xia, Hou-De Zhou, Xu Cao, Hui Xie, Er-Yuan Liao, Xiang-Hang Luo

×

Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling
María P. Menéndez-Gutiérrez, … , Annabel F. Valledor, Mercedes Ricote
María P. Menéndez-Gutiérrez, … , Annabel F. Valledor, Mercedes Ricote
Published January 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77186.
View: Text | PDF

Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

  • Text
  • PDF
Abstract

Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis.

Authors

María P. Menéndez-Gutiérrez, Tamás Rőszer, Lucía Fuentes, Vanessa Núñez, Amelia Escolano, Juan Miguel Redondo, Nora De Clerck, Daniel Metzger, Annabel F. Valledor, Mercedes Ricote

×
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • …
  • 16
  • 17
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts