Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Bone biology

  • 172 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 17
  • 18
  • Next →
Proprotein convertase furin regulates osteocalcin and bone endocrine function
Omar El-Rifai, Jacqueline Chow, Julie Lacombe, Catherine Julien, Denis Faubert, Delia Susan-Resiga, Rachid Essalmani, John W.M. Creemers, Nabil G. Seidah, Mathieu Ferron
Omar El-Rifai, Jacqueline Chow, Julie Lacombe, Catherine Julien, Denis Faubert, Delia Susan-Resiga, Rachid Essalmani, John W.M. Creemers, Nabil G. Seidah, Mathieu Ferron
View: Text | PDF

Proprotein convertase furin regulates osteocalcin and bone endocrine function

  • Text
  • PDF
Abstract

Osteocalcin (OCN) is an osteoblast-derived hormone that increases energy expenditure, insulin sensitivity, insulin secretion, and glucose tolerance. The cDNA sequence of OCN predicts that, like many other peptide hormones, OCN is first synthesized as a prohormone (pro-OCN). The importance of pro-OCN maturation in regulating OCN and the identity of the endopeptidase responsible for pro-OCN cleavage in osteoblasts are still unknown. Here, we show that the proprotein convertase furin is responsible for pro-OCN maturation in vitro and in vivo. Using pharmacological and genetic experiments, we also determined that furin-mediated pro-OCN cleavage occurred independently of its γ-carboxylation, a posttranslational modification that is known to hamper OCN endocrine action. However, because pro-OCN is not efficiently decarboxylated and activated during bone resorption, inactivation of furin in osteoblasts in mice resulted in decreased circulating levels of undercarboxylated OCN, impaired glucose tolerance, and reduced energy expenditure. Furthermore, we show that Furin deletion in osteoblasts reduced appetite, a function not modulated by OCN, thus suggesting that osteoblasts may secrete additional hormones that regulate different aspects of energy metabolism. Accordingly, the metabolic defects of the mice lacking furin in osteoblasts became more apparent under pair-feeding conditions. These findings identify furin as an important regulator of bone endocrine function.

Authors

Omar El-Rifai, Jacqueline Chow, Julie Lacombe, Catherine Julien, Denis Faubert, Delia Susan-Resiga, Rachid Essalmani, John W.M. Creemers, Nabil G. Seidah, Mathieu Ferron

×

Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism
Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford
Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford
View: Text | PDF

Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism

  • Text
  • PDF
Abstract

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress–associated dwarfism MCDS.

Authors

Lorna A. Mullan, Ewa J. Mularczyk, Louise H. Kung, Mitra Forouhan, Jordan M.A. Wragg, Royston Goodacre, John F. Bateman, Eileithyia Swanton, Michael D. Briggs, Raymond P. Boot-Handford

×

mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy
Rosa Bartolomeo, Laura Cinque, Chiara De Leonibus, Alison Forrester, Anna Chiara Salzano, Jlenia Monfregola, Emanuela De Gennaro, Edoardo Nusco, Isabella Azario, Carmela Lanzara, Marta Serafini, Beth Levine, Andrea Ballabio, Carmine Settembre
Rosa Bartolomeo, Laura Cinque, Chiara De Leonibus, Alison Forrester, Anna Chiara Salzano, Jlenia Monfregola, Emanuela De Gennaro, Edoardo Nusco, Isabella Azario, Carmela Lanzara, Marta Serafini, Beth Levine, Andrea Ballabio, Carmine Settembre
View: Text | PDF

mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy

  • Text
  • PDF
Abstract

The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance–associated gene (UVRAG), reducing the activity of the associated Beclin 1–Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1–Vps34–UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.

Authors

Rosa Bartolomeo, Laura Cinque, Chiara De Leonibus, Alison Forrester, Anna Chiara Salzano, Jlenia Monfregola, Emanuela De Gennaro, Edoardo Nusco, Isabella Azario, Carmela Lanzara, Marta Serafini, Beth Levine, Andrea Ballabio, Carmine Settembre

×

Parathyroid hormone regulates fates of murine osteoblast precursors in vivo
Deepak H. Balani, Noriaki Ono, Henry M. Kronenberg
Deepak H. Balani, Noriaki Ono, Henry M. Kronenberg
View: Text | PDF

Parathyroid hormone regulates fates of murine osteoblast precursors in vivo

  • Text
  • PDF
Abstract

Teriparatide, a recombinant form of parathyroid hormone (PTH), is the only approved treatment for osteoporosis that increases the rate of bone formation. Teriparatide increases osteoblast numbers by suppressing osteoblast apoptosis and activating bone-lining cells. No direct evidence for teriparatide’s actions on early cells of the osteoblast lineage has been demonstrated. Here, we have employed a lineage-tracing strategy that uses a tamoxifen-dependent, promoter-driven cre to mark early cells of the osteoblast lineage in adult mice. We show that teriparatide increases the numbers of osteoblast precursors and drives their differentiation into mature osteoblasts. Unexpectedly, following withdrawal of teriparatide therapy, bone marrow adipocytes increased dramatically in number. Some of these adipocytes derived from cells marked by Sox9-cre expression weeks earlier. Continued therapy with teriparatide prevented the appearance of adipocytes. Selective, inducible deletion of the PTH receptor in Sox9-cre cells demonstrated that PTH receptor expression is required for teriparatide-mediated increases in early osteoblast precursors. The increase in early precursors after teriparatide administration was associated with robust suppression of precursor apoptosis without affecting their rate of proliferation. Thus, teriparatide increases the numbers of early cells of the osteoblast lineage, hastens their differentiation into osteoblasts, and suppresses their differentiation into adipocytes in vivo.

Authors

Deepak H. Balani, Noriaki Ono, Henry M. Kronenberg

×

Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis
Kyu Sang Joeng, Yi-Chien Lee, Joohyun Lim, Yuqing Chen, Ming-Ming Jiang, Elda Munivez, Catherine Ambrose, Brendan H. Lee
Kyu Sang Joeng, Yi-Chien Lee, Joohyun Lim, Yuqing Chen, Ming-Ming Jiang, Elda Munivez, Catherine Ambrose, Brendan H. Lee
View: Text | PDF

Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis

  • Text
  • PDF
Abstract

Mutations in WNT1 cause osteogenesis imperfecta (OI) and early-onset osteoporosis, identifying it as a key Wnt ligand in human bone homeostasis. However, how and where WNT1 acts in bone are unclear. To address this mechanism, we generated late-osteoblast-specific and osteocyte-specific WNT1 loss- and gain-of-function mouse models. Deletion of Wnt1 in osteocytes resulted in low bone mass with spontaneous fractures similar to that observed in OI patients. Conversely, Wnt1 overexpression from osteocytes stimulated bone formation by increasing osteoblast number and activity, which was due in part to activation of mTORC1 signaling. While antiresorptive therapy is the mainstay of OI treatment, it has limited efficacy in WNT1-related OI. In this study, anti-sclerostin antibody (Scl-Ab) treatment effectively improved bone mass and dramatically decreased fracture rate in swaying mice, a model of global Wnt1 loss. Collectively, our data suggest that WNT1-related OI and osteoporosis are caused in part by decreased mTORC1-dependent osteoblast function resulting from loss of WNT1 signaling in osteocytes. As such, this work identifies an anabolic function of osteocytes as a source of Wnt in bone development and homoeostasis, complementing their known function as targets of Wnt signaling in regulating osteoclastogenesis. Finally, this study suggests that Scl-Ab is an effective genotype-specific treatment option for WNT1-related OI and osteoporosis.

Authors

Kyu Sang Joeng, Yi-Chien Lee, Joohyun Lim, Yuqing Chen, Ming-Ming Jiang, Elda Munivez, Catherine Ambrose, Brendan H. Lee

×

Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism
Yoshinori Matsumoto, Jose La Rose, Melissa Lim, Hibret A. Adissu, Napoleon Law, Xiaohong Mao, Feng Cong, Paula Mera, Gerard Karsenty, David Goltzman, Adele Changoor, Lucia Zhang, Megan Stajkowski, Marc D. Grynpas, Carsten Bergmann, Robert Rottapel
Yoshinori Matsumoto, Jose La Rose, Melissa Lim, Hibret A. Adissu, Napoleon Law, Xiaohong Mao, Feng Cong, Paula Mera, Gerard Karsenty, David Goltzman, Adele Changoor, Lucia Zhang, Megan Stajkowski, Marc D. Grynpas, Carsten Bergmann, Robert Rottapel
View: Text | PDF

Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism

  • Text
  • PDF
Abstract

Cleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced β-catenin activation and reduced Fgf18 expression in osteoblasts. We show that FGF18 induces transcriptional coactivator with PDZ-binding motif (TAZ) expression, which is required for osteoblast proliferation and differentiation through transcriptional enhancer associate domain (TEAD) and runt-related transcription factor 2 (RUNX2) transcription factors, respectively. Finally, we demonstrate that adipogenesis is enhanced in Rnf146–/– mouse embryonic fibroblasts. Moreover, mice with loss of RNF146 within the osteoblast lineage had increased fat stores and were glucose intolerant with severe osteopenia because of defective osteoblastogenesis and subsequent impaired osteocalcin production. These findings indicate that RNF146 is required to coordinate β-catenin signaling within the osteoblast lineage during embryonic and postnatal bone development.

Authors

Yoshinori Matsumoto, Jose La Rose, Melissa Lim, Hibret A. Adissu, Napoleon Law, Xiaohong Mao, Feng Cong, Paula Mera, Gerard Karsenty, David Goltzman, Adele Changoor, Lucia Zhang, Megan Stajkowski, Marc D. Grynpas, Carsten Bergmann, Robert Rottapel

×

MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα
Seyeon Bae, Min Joon Lee, Se Hwan Mun, Eugenia G. Giannopoulou, Vladimir Yong-Gonzalez, Justin R. Cross, Koichi Murata, Vincent Giguère, Marjolein van der Meulen, Kyung-Hyun Park-Min
Seyeon Bae, Min Joon Lee, Se Hwan Mun, Eugenia G. Giannopoulou, Vladimir Yong-Gonzalez, Justin R. Cross, Koichi Murata, Vincent Giguère, Marjolein van der Meulen, Kyung-Hyun Park-Min
View: Text | PDF

MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα

  • Text
  • PDF
Abstract

Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor–related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.

Authors

Seyeon Bae, Min Joon Lee, Se Hwan Mun, Eugenia G. Giannopoulou, Vladimir Yong-Gonzalez, Justin R. Cross, Koichi Murata, Vincent Giguère, Marjolein van der Meulen, Kyung-Hyun Park-Min

×

Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia
Lothar Seefried, Jasmin Baumann, Sarah Hemsley, Christine Hofmann, Erdmute Kunstmann, Beate Kiese, Yue Huang, Simon Chivers, Marie-Anne Valentin, Babul Borah, Ronenn Roubenoff, Uwe Junker, Franz Jakob
Lothar Seefried, Jasmin Baumann, Sarah Hemsley, Christine Hofmann, Erdmute Kunstmann, Beate Kiese, Yue Huang, Simon Chivers, Marie-Anne Valentin, Babul Borah, Ronenn Roubenoff, Uwe Junker, Franz Jakob
View: Text | PDF

Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia

  • Text
  • PDF
Abstract

BACKGROUND. Hypophosphatasia (HPP) is a rare genetic disorder resulting in variable alterations of bone formation and mineralization that are caused by mutations in the ALPL gene, encoding the tissue-nonspecific alkaline phosphatase (ALP) enzyme.

METHODS. In this phase IIA open-label, single-center, intra-patient, dose-escalating study, adult patients with HPP received 3 ascending intravenous doses of 5, 10, and 20 mg/kg BPS804, a fully human anti-sclerostin monoclonal antibody, on days 1, 15, and 29, respectively. Patients were followed for 16 weeks after the last dose. We assessed the pharmacodynamics, pharmacokinetics, preliminary efficacy, and safety of BPS804 administrations at specified intervals during treatment and follow-up.

RESULTS. Eight patients (mean age 47.8 years) were enrolled in the study (6 females, 2 males). BPS804 treatment increased mean ALP and bone-specific ALP enzymatic activity between days 2 and 29. Transient increases in the bone formation markers procollagen type-I N-terminal propeptide (PINP), osteocalcin, and parathyroid hormone as well as a transient decrease in the bone resorption marker C-telopeptide of type I collagen (CTX-1) were observed. Lumbar spine bone mineral density showed a mean increase by day 85 and at end of study. Treatment-associated adverse events were mild and transient.

CONCLUSION. BPS804 treatment was well tolerated and resulted in increases in bone formation biomarkers and bone mineral density, suggesting that sclerostin inhibition could be applied to enhance bone mineral density, stability, and regeneration in non-life-threatening clinical situations in adults with HPP.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01406977.

FUNDING. Novartis Institutes for BioMedical Research, Basel, Switzerland.

Authors

Lothar Seefried, Jasmin Baumann, Sarah Hemsley, Christine Hofmann, Erdmute Kunstmann, Beate Kiese, Yue Huang, Simon Chivers, Marie-Anne Valentin, Babul Borah, Ronenn Roubenoff, Uwe Junker, Franz Jakob

×

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146
Yoshinori Matsumoto, Jose Larose, Oliver A. Kent, Melissa Lim, Adele Changoor, Lucia Zhang, Yaryna Storozhuk, Xiaohong Mao, Marc D. Grynpas, Feng Cong, Robert Rottapel
Yoshinori Matsumoto, Jose Larose, Oliver A. Kent, Melissa Lim, Adele Changoor, Lucia Zhang, Yaryna Storozhuk, Xiaohong Mao, Marc D. Grynpas, Feng Cong, Robert Rottapel
View: Text | PDF

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146

  • Text
  • PDF
Abstract

Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB–related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of β-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.

Authors

Yoshinori Matsumoto, Jose Larose, Oliver A. Kent, Melissa Lim, Adele Changoor, Lucia Zhang, Yaryna Storozhuk, Xiaohong Mao, Marc D. Grynpas, Feng Cong, Robert Rottapel

×

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia
Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee
Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee
View: Text | PDF

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia

  • Text
  • PDF
Abstract

Shohat-type spondyloepimetaphyseal dysplasia (SEMD) is a skeletal dysplasia that affects cartilage development. Similar skeletal disorders, such as spondyloepiphyseal dysplasias, are linked to mutations in type II collagen (COL2A1), but the causative gene in SEMD is not known. Here, we have performed whole-exome sequencing to identify a recurrent homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK domain containing 1 (DDRGK1) in 4 families affected by SEMD. In zebrafish, ddrgk1 deficiency disrupted craniofacial cartilage development and led to decreased levels of the chondrogenic master transcription factor sox9 and its downstream target, col2a1. Overexpression of sox9 rescued the zebrafish chondrogenic and craniofacial phenotype generated by ddrgk1 knockdown, thus identifying DDRGK1 as a regulator of SOX9. Consistent with these results, Ddrgk1–/– mice displayed delayed limb bud chondrogenic condensation, decreased SOX9 protein expression and Col2a1 transcript levels, and increased apoptosis. Furthermore, we determined that DDRGK1 can directly bind to SOX9 to inhibit its ubiquitination and proteasomal degradation. Taken together, these data indicate that loss of DDRGK1 decreases SOX9 expression and causes a human skeletal dysplasia, identifying a mechanism that regulates chondrogenesis via modulation of SOX9 ubiquitination.

Authors

Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 17
  • 18
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone biology
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts