Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Bone biology

  • 166 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 16
  • 17
  • Next →
MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα
Seyeon Bae, … , Marjolein van der Meulen, Kyung-Hyun Park-Min
Seyeon Bae, … , Marjolein van der Meulen, Kyung-Hyun Park-Min
Published May 22, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89935.
View: Text | PDF

MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα

  • Text
  • PDF
Abstract

Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor–related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.

Authors

Seyeon Bae, Min Joon Lee, Se Hwan Mun, Eugenia G. Giannopoulou, Vladimir Yong-Gonzalez, Justin R. Cross, Koichi Murata, Vincent Giguère, Marjolein van der Meulen, Kyung-Hyun Park-Min

×

Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia
Lothar Seefried, … , Uwe Junker, Franz Jakob
Lothar Seefried, … , Uwe Junker, Franz Jakob
Published April 24, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI83731.
View: Text | PDF

Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia

  • Text
  • PDF
Abstract

BACKGROUND. Hypophosphatasia (HPP) is a rare genetic disorder resulting in variable alterations of bone formation and mineralization that are caused by mutations in the ALPL gene, encoding the tissue-nonspecific alkaline phosphatase (ALP) enzyme.

METHODS. In this phase IIA open-label, single-center, intra-patient, dose-escalating study, adult patients with HPP received 3 ascending intravenous doses of 5, 10, and 20 mg/kg BPS804, a fully human anti-sclerostin monoclonal antibody, on days 1, 15, and 29, respectively. Patients were followed for 16 weeks after the last dose. We assessed the pharmacodynamics, pharmacokinetics, preliminary efficacy, and safety of BPS804 administrations at specified intervals during treatment and follow-up.

RESULTS. Eight patients (mean age 47.8 years) were enrolled in the study (6 females, 2 males). BPS804 treatment increased mean ALP and bone-specific ALP enzymatic activity between days 2 and 29. Transient increases in the bone formation markers procollagen type-I N-terminal propeptide (PINP), osteocalcin, and parathyroid hormone as well as a transient decrease in the bone resorption marker C-telopeptide of type I collagen (CTX-1) were observed. Lumbar spine bone mineral density showed a mean increase by day 85 and at end of study. Treatment-associated adverse events were mild and transient.

CONCLUSION. BPS804 treatment was well tolerated and resulted in increases in bone formation biomarkers and bone mineral density, suggesting that sclerostin inhibition could be applied to enhance bone mineral density, stability, and regeneration in non-life-threatening clinical situations in adults with HPP.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01406977.

FUNDING. Novartis Institutes for BioMedical Research, Basel, Switzerland.

Authors

Lothar Seefried, Jasmin Baumann, Sarah Hemsley, Christine Hofmann, Erdmute Kunstmann, Beate Kiese, Yue Huang, Simon Chivers, Marie-Anne Valentin, Babul Borah, Ronenn Roubenoff, Uwe Junker, Franz Jakob

×

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146
Yoshinori Matsumoto, … , Feng Cong, Robert Rottapel
Yoshinori Matsumoto, … , Feng Cong, Robert Rottapel
Published March 13, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90527.
View: Text | PDF

RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146

  • Text
  • PDF
Abstract

Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB–related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of β-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.

Authors

Yoshinori Matsumoto, Jose Larose, Oliver A. Kent, Melissa Lim, Adele Changoor, Lucia Zhang, Yaryna Storozhuk, Xiaohong Mao, Marc D. Grynpas, Feng Cong, Robert Rottapel

×

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Published March 6, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90193.
View: Text | PDF

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia

  • Text
  • PDF
Abstract

Shohat-type spondyloepimetaphyseal dysplasia (SEMD) is a skeletal dysplasia that affects cartilage development. Similar skeletal disorders, such as spondyloepiphyseal dysplasias, are linked to mutations in type II collagen (COL2A1), but the causative gene in SEMD is not known. Here, we have performed whole-exome sequencing to identify a recurrent homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK domain containing 1 (DDRGK1) in 4 families affected by SEMD. In zebrafish, ddrgk1 deficiency disrupted craniofacial cartilage development and led to decreased levels of the chondrogenic master transcription factor sox9 and its downstream target, col2a1. Overexpression of sox9 rescued the zebrafish chondrogenic and craniofacial phenotype generated by ddrgk1 knockdown, thus identifying DDRGK1 as a regulator of SOX9. Consistent with these results, Ddrgk1–/– mice displayed delayed limb bud chondrogenic condensation, decreased SOX9 protein expression and Col2a1 transcript levels, and increased apoptosis. Furthermore, we determined that DDRGK1 can directly bind to SOX9 to inhibit its ubiquitination and proteasomal degradation. Taken together, these data indicate that loss of DDRGK1 decreases SOX9 expression and causes a human skeletal dysplasia, identifying a mechanism that regulates chondrogenesis via modulation of SOX9 ubiquitination.

Authors

Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee

×

Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2
Yoshinori Matsumoto, … , Ann Marie Pendergast, Robert Rottapel
Yoshinori Matsumoto, … , Ann Marie Pendergast, Robert Rottapel
Published October 31, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI87802.
View: Text | PDF

Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2

  • Text
  • PDF
Abstract

Cellular identity in metazoan organisms is frequently established through lineage-specifying transcription factors, which control their own expression through transcriptional positive feedback, while antagonizing the developmental networks of competing lineages. Here, we have uncovered a distinct positive feedback loop that arises from the reciprocal stabilization of the tyrosine kinase ABL and the transcriptional coactivator TAZ. Moreover, we determined that this loop is required for osteoblast differentiation and embryonic skeletal formation. ABL potentiated the assembly and activation of the RUNX2-TAZ master transcription factor complex that is required for osteoblastogenesis, while antagonizing PPARγ-mediated adipogenesis. ABL also enhanced TAZ nuclear localization and the formation of the TAZ-TEAD complex that is required for osteoblast expansion. Last, we have provided genetic data showing that regulation of the ABL-TAZ amplification loop lies downstream of the adaptor protein 3BP2, which is mutated in the craniofacial dysmorphia syndrome cherubism. Our study demonstrates an interplay between ABL and TAZ that controls the mesenchymal maturation program toward the osteoblast lineage and is mechanistically distinct from the established model of lineage-specific maturation.

Authors

Yoshinori Matsumoto, Jose La Rose, Oliver A. Kent, Melany J. Wagner, Masahiro Narimatsu, Aaron D. Levy, Mitchell H. Omar, Jiefei Tong, Jonathan R. Krieger, Emily Riggs, Yaryna Storozhuk, Julia Pasquale, Manuela Ventura, Behzad Yeganeh, Martin Post, Michael F. Moran, Marc D. Grynpas, Jeffrey L. Wrana, Giulio Superti-Furga, Anthony J. Koleske, Ann Marie Pendergast, Robert Rottapel

×

Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis
Minjie Zhang, … , Gregory D. Jay, Matthew L. Warman
Minjie Zhang, … , Gregory D. Jay, Matthew L. Warman
Published July 18, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83676.
View: Text | PDF

Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis

  • Text
  • PDF
Abstract

Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

Authors

Minjie Zhang, Sriniwasan B. Mani, Yao He, Amber M. Hall, Lin Xu, Yefu Li, David Zurakowski, Gregory D. Jay, Matthew L. Warman

×

Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics
Jau-Yi Li, … , Rheinallt M. Jones, Roberto Pacifici
Jau-Yi Li, … , Rheinallt M. Jones, Roberto Pacifici
Published April 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86062.
View: Text | PDF

Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics

  • Text
  • PDF
Abstract

A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency–induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid–deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid–deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis.

Authors

Jau-Yi Li, Benoit Chassaing, Abdul Malik Tyagi, Chiara Vaccaro, Tao Luo, Jonathan Adams, Trevor M. Darby, M. Neale Weitzmann, Jennifer G. Mulle, Andrew T. Gewirtz, Rheinallt M. Jones, Roberto Pacifici

×

Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model
Davide Komla-Ebri, … , Martin Biosse-Duplan, Laurence Legeai-Mallet
Davide Komla-Ebri, … , Martin Biosse-Duplan, Laurence Legeai-Mallet
Published April 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83926.
View: Text | PDF

Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model

  • Text
  • PDF
Abstract

Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.

Authors

Davide Komla-Ebri, Emilie Dambroise, Ina Kramer, Catherine Benoist-Lasselin, Nabil Kaci, Cindy Le Gall, Ludovic Martin, Patricia Busca, Florent Barbault, Diana Graus-Porta, Arnold Munnich, Michaela Kneissel, Federico Di Rocco, Martin Biosse-Duplan, Laurence Legeai-Mallet

×

Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis
Jason S. Rockel, … , Gordon M. Keller, Benjamin A. Alman
Jason S. Rockel, … , Gordon M. Keller, Benjamin A. Alman
Published March 28, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80205.
View: Text | PDF

Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis

  • Text
  • PDF
Abstract

Both the WNT/β-catenin and hedgehog signaling pathways are important in the regulation of limb development, chondrocyte differentiation, and degeneration of articular cartilage in osteoarthritis (OA). It is not clear how these signaling pathways interact in interzone cell differentiation and synovial joint morphogenesis. Here, we determined that constitutive activation of hedgehog signaling specifically within interzone cells induces joint morphological changes by selectively inhibiting β-catenin–induced Fgf18 expression. Stabilization of β-catenin or treatment with FGF18 rescued hedgehog-induced phenotypes. Hedgehog signaling induced expression of a dominant negative isoform of TCF7L2 (dnTCF7L2) in interzone progeny, which may account for the selective regulation of β-catenin target genes observed. Knockdown of TCF7L2 isoforms in mouse chondrocytes rescued hedgehog signaling–induced Fgf18 downregulation, while overexpression of the human dnTCF7L2 orthologue (dnTCF4) in human chondrocytes promoted the expression of catabolic enzymes associated with OA. Similarly, expression of dnTCF4 in human chondrocytes positively correlated with the aggrecanase ADAMTS4. Consistent with our developmental findings, activation of β-catenin also attenuated hedgehog-induced or surgically induced articular cartilage degeneration in mouse models of OA. Thus, our results demonstrate that hedgehog inhibits selective β-catenin target gene expression to direct interzone progeny fates and articular cartilage development and disease. Moreover, agents that increase β-catenin activity have the potential to therapeutically attenuate articular cartilage degeneration as part of OA.

Authors

Jason S. Rockel, Chunying Yu, Heather Whetstone, April M. Craft, Katherine Reilly, Henry Ma, Hidetoshi Tsushima, Vijitha Puviindran, Mushriq Al-Jazrawe, Gordon M. Keller, Benjamin A. Alman

×

NOTCH signaling in skeletal progenitors is critical for fracture repair
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Cuicui Wang, … , Hani A. Awad, Matthew J. Hilton
Published March 7, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI80672.
View: Text | PDF

NOTCH signaling in skeletal progenitors is critical for fracture repair

  • Text
  • PDF
Abstract

Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.

Authors

Cuicui Wang, Jason A. Inzana, Anthony J. Mirando, Yinshi Ren, Zhaoyang Liu, Jie Shen, Regis J. O’Keefe, Hani A. Awad, Matthew J. Hilton

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 16
  • 17
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts