Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Bone biology

  • 169 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →
IL-1 mediates TNF-induced osteoclastogenesis
Shi Wei, … , F. Patrick Ross, Steven L. Teitelbaum
Shi Wei, … , F. Patrick Ross, Steven L. Teitelbaum
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):282-290. https://doi.org/10.1172/JCI23394.
View: Text | PDF

IL-1 mediates TNF-induced osteoclastogenesis

  • Text
  • PDF
Abstract

TNF-induced receptor activator NF-κB ligand (RANKL) synthesis by bone marrow stromal cells is a fundamental component of inflammatory osteolysis. We found that this process was abolished by IL-1 receptor antagonist (IL-1Ra) or in stromal cells derived from type I IL-1 receptor–deficient (IL-1RI–deficient) mice. Reflecting sequential signaling of the cytokines TNF and IL-1, TNF induces stromal cell expression of IL-1 and IL-1RI. These data suggest that TNF regulates RANKL expression via IL-1, and, therefore, IL-1 plays a role in TNF-induced periarticular osteolysis. Consistent with this posture, TNF-stimulated osteoclastogenesis in cultures consisting of WT marrow macrophages and stromal cells exposed to IL-1Ra or in cocultures established with IL-1RI–deficient stromal cells was reduced approximately 50%. The same magnitude of osteoclast inhibition occurred in IL-1RI–deficient mice following TNF administration in vivo. Like TNF, IL-1 directly targeted osteoclast precursors and promoted the osteoclast phenotype in a TNF-independent manner in the presence of permissive levels of RANKL. IL-1 is able to induce RANKL expression by stromal cells and directly stimulate osteoclast precursor differentiation under the aegis of p38 MAPK. Thus, IL-1 mediates the osteoclastogenic effect of TNF by enhancing stromal cell expression of RANKL and directly stimulating differentiation of osteoclast precursors.

Authors

Shi Wei, Hideki Kitaura, Ping Zhou, F. Patrick Ross, Steven L. Teitelbaum

×

A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells
Masako Miura, … , Marian Young, Songtao Shi
Masako Miura, … , Marian Young, Songtao Shi
Published December 15, 2004
Citation Information: J Clin Invest. 2004;114(12):1704-1713. https://doi.org/10.1172/JCI20427.
View: Text | PDF

A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells

  • Text
  • PDF
Abstract

Caspase-3 is a critical enzyme for apoptosis and cell survival. Here we report delayed ossification and decreased bone mineral density in caspase-3–deficient (Casp3–/– and Casp3+/–) mice due to an attenuated osteogenic differentiation of bone marrow stromal stem cells (BMSSCs). The mechanism involved in the impaired differentiation of BMSSCs is due, at least partially, to the overactivated TGF-β/Smad2 signaling pathway and the upregulated expressions of p53 and p21 along with the downregulated expressions of Cdk2 and Cdc2, and ultimately increased replicative senescence. In addition, the overactivated TGF-β/Smad2 signaling may result in the compromised Runx2/Cbfa1 expression in preosteoblasts. Furthermore, we demonstrate that caspase-3 inhibitor, a potential agent for clinical treatment of human diseases, caused accelerated bone loss in ovariectomized mice, which is also associated with the overactivated TGF-β/Smad2 signaling in BMSSCs. This study demonstrates that caspase-3 is crucial for the differentiation of BMSSCs by influencing TGF-β/Smad2 pathway and cell cycle progression.

Authors

Masako Miura, Xiao-Dong Chen, Matthew R. Allen, Yanming Bi, Stan Gronthos, Byoung-Moo Seo, Saquib Lakhani, Richard A. Flavell, Xin-Hua Feng, Pamela Gehron Robey, Marian Young, Songtao Shi

×

Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation
Fumiyo Ikeda, … , Anjana Rao, Toshiyuki Yoneda
Fumiyo Ikeda, … , Anjana Rao, Toshiyuki Yoneda
Published August 16, 2004
Citation Information: J Clin Invest. 2004;114(4):475-484. https://doi.org/10.1172/JCI19657.
View: Text | PDF

Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation

  • Text
  • PDF
Abstract

Receptor activator of NF-κB ligand (RANKL) plays an essential role in osteoclast formation and bone resorption. Although genetic and biochemical studies indicate that RANKL regulates osteoclast differentiation by activating receptor activator of NF-κB and associated signaling molecules, the molecular mechanisms of RANKL-regulated osteoclast differentiation have not yet been fully established. We investigated the role of the transcription factor c-Jun, which is activated by RANKL, in osteoclastogenesis using transgenic mice expressing dominant-negative c-Jun specifically in the osteoclast lineage. We found that the transgenic mice manifested severe osteopetrosis due to impaired osteoclastogenesis. Blockade of c-Jun signaling also markedly inhibited soluble RANKL-induced osteoclast differentiation in vitro. Overexpression of nuclear factor of activated T cells 1 (NFAT1) (NFATc2/NFATp) or NFAT2 (NFATc1/NFATc) promoted differentiation of osteoclast precursor cells into tartrate-resistant acid phosphatase–positive (TRAP–positive) multinucleated osteoclast-like cells even in the absence of RANKL. Overexpression of NFAT1 also markedly transactivated the TRAP gene promoter. These osteoclastogenic activities of NFAT were abrogated by overexpression of dominant-negative c-Jun. Importantly, osteoclast differentiation and induction of NFAT2 expression by NFAT1 overexpression or soluble RANKL treatment were profoundly diminished in spleen cells of the transgenic mice. Collectively, these results indicate that c-Jun signaling in cooperation with NFAT is crucial for RANKL-regulated osteoclast differentiation.

Authors

Fumiyo Ikeda, Riko Nishimura, Takuma Matsubara, Sakae Tanaka, Jun-ichiro Inoue, Sakamuri V. Reddy, Kenji Hata, Kenji Yamashita, Toru Hiraga, Toshiyuki Watanabe, Toshio Kukita, Katsuji Yoshioka, Anjana Rao, Toshiyuki Yoneda

×

Absence of platelet-activating factor receptor protects mice from osteoporosis following ovariectomy
Hisako Hikiji, … , Tsuyoshi Takato, Takao Shimizu
Hisako Hikiji, … , Tsuyoshi Takato, Takao Shimizu
Published July 1, 2004
Citation Information: J Clin Invest. 2004;114(1):85-93. https://doi.org/10.1172/JCI20504.
View: Text | PDF

Absence of platelet-activating factor receptor protects mice from osteoporosis following ovariectomy

  • Text
  • PDF
Abstract

While platelet-activating factor (PAF) is produced in various diseases associated with bone resorption, its functions in bone metabolism remain unknown. Using PAF receptor–deficient mice, we evaluated the role of PAF in the development of bone resorption following ovariectomy, a model of postmenopausal osteoporosis. Through observations of bone mineral density and histomorphometric parameters, it was found that bone resorption was markedly attenuated in PAF receptor–deficient mice, indicating that PAF links estrogen depletion and osteoporosis in vivo. Osteoclasts expressed higher amounts of the enzymes required for PAF biosynthesis than osteoblasts. TNF-α and IL-1β increased the acetyl-coenzyme A:lyso-PAF acetyltransferase activity in osteoclasts. Osteoclasts, but not osteoblasts, expressed the functional PAF receptor. PAF receptor stimulation prolonged the survival of osteoclasts in vitro. Furthermore, osteoclasts treated with a PAF receptor antagonist, and also those from PAF receptor–deficient mice, showed reductions in survival rate and Ca resorption activity. Consistently, in organ cultures, bone resorption was significantly suppressed by a PAF receptor antagonist treatment or genetic PAF receptor deficiency. Thus, these results suggest that, through the inflammatory cytokines, estrogen depletion enhances PAF production as a unique autocrine factor for osteoclast functions. Inhibition of PAF function might pave the way for a new strategy to prevent postmenopausal bone loss without disturbing osteoblast functions.

Authors

Hisako Hikiji, Satoshi Ishii, Hideo Shindou, Tsuyoshi Takato, Takao Shimizu

×

The cyclin-dependent kinase inhibitor p57Kip2 mediates proliferative actions of PTHrP in chondrocytes
Helen E. MacLean, … , David Cobrinik, Henry M. Kronenberg
Helen E. MacLean, … , David Cobrinik, Henry M. Kronenberg
Published May 1, 2004
Citation Information: J Clin Invest. 2004;113(9):1334-1343. https://doi.org/10.1172/JCI21252.
View: Text | PDF

The cyclin-dependent kinase inhibitor p57Kip2 mediates proliferative actions of PTHrP in chondrocytes

  • Text
  • PDF
Abstract

Parathyroid hormone–related peptide (PTHrP) is a positive regulator of chondrocyte proliferation during bone development. In embryonic mice lacking PTHrP, chondrocytes stop proliferating prematurely, with accelerated differentiation. Because the bone phenotype of mice lacking the cyclin-dependent kinase inhibitor p57Kip2 is the opposite of the PTHrP-null phenotype, we hypothesized that PTHrP’s proliferative actions in chondrocytes might be mediated by opposing p57. We generated p57/PTHrP-null embryos, which showed partial rescue of the PTHrP-null phenotype. There was reversal of the loss of proliferative chondrocytes in most bones, with reversal of the accelerated differentiation that occurs in the PTHrP-null phenotype. p57 mRNA and protein were upregulated in proliferative chondrocytes in the absence of PTHrP. Metatarsal culture studies confirmed the action of PTHrP to decrease p57 mRNA and protein levels in a model in which parathyroid hormone (PTH), used as an analog of PTHrP, increased chondrocyte proliferation rate and the length of the proliferative domain. PTH treatment of p57-null metatarsals had no effect on proliferation rate in round proliferative chondrocytes but still stimulated proliferation in columnar chondrocytes. These studies suggest that the effects of PTHrP on both the rate and extent of chondrocyte proliferation are mediated, at least in part, through suppression of p57 expression.

Authors

Helen E. MacLean, Jun Guo, Melissa C. Knight, Pumin Zhang, David Cobrinik, Henry M. Kronenberg

×

PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
Toru Akune, … , Takashi Kadowaki, Hiroshi Kawaguchi
Toru Akune, … , Takashi Kadowaki, Hiroshi Kawaguchi
Published March 15, 2004
Citation Information: J Clin Invest. 2004;113(6):846-855. https://doi.org/10.1172/JCI19900.
View: Text | PDF

PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors

  • Text
  • PDF
Abstract

Based on the fact that aging is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow and that osteoblasts and adipocytes share a common progenitor, this study investigated the role of PPARγ, a key regulator of adipocyte differentiation, in bone metabolism. Homozygous PPARγ-deficient ES cells failed to differentiate into adipocytes, but spontaneously differentiated into osteoblasts, and these were restored by reintroduction of the PPARγ gene. Heterozygous PPARγ-deficient mice exhibited high bone mass with increased osteoblastogenesis, but normal osteoblast and osteoclast functions, and this effect was not mediated by insulin or leptin. The osteogenic effect of PPARγ haploinsufficiency became prominent with aging but was not changed upon ovariectomy. The PPARγ haploinsufficiency was confirmed to enhance osteoblastogenesis in the bone marrow cell culture but did not affect the cultures of differentiated osteoblasts or osteoclast-lineage cells. This study demonstrates a PPARγ-dependent regulation of bone metabolism in vivo, in that PPARγ insufficiency increases bone mass by stimulating osteoblastogenesis from bone marrow progenitors.

Authors

Toru Akune, Shinsuke Ohba, Satoru Kamekura, Masayuki Yamaguchi, Ung-il Chung, Naoto Kubota, Yasuo Terauchi, Yoshifumi Harada, Yoshiaki Azuma, Kozo Nakamura, Takashi Kadowaki, Hiroshi Kawaguchi

×

Distinct roles of Smad pathways and p38 pathways in cartilage-specific gene expression in synovial fibroblasts
Hiroaki Seto, … , Hiroshi Kawaguchi, Sakae Tanaka
Hiroaki Seto, … , Hiroshi Kawaguchi, Sakae Tanaka
Published March 1, 2004
Citation Information: J Clin Invest. 2004;113(5):718-726. https://doi.org/10.1172/JCI19899.
View: Text | PDF

Distinct roles of Smad pathways and p38 pathways in cartilage-specific gene expression in synovial fibroblasts

  • Text
  • PDF
Abstract

The role of TGF-β/bone morphogenetic protein signaling in the chondrogenic differentiation of human synovial fibroblasts (SFs) was examined with the adenovirus vector–mediated gene transduction system. Expression of constitutively active activin receptor–like kinase 3 (ALK3CA) induced chondrocyte-specific gene expression in SFs cultured in pellets or in SF pellets transplanted into nude mice, in which both the Smad and p38 pathways are essential. To analyze downstream cascades of ALK3 signaling, we utilized adenovirus vectors carrying either Smad1 to stimulate Smad pathways or constitutively active MKK6 (MKK6CA) to activate p38 pathways. Smad1 expression had a synergistic effect on ALK3CA, while activation of p38 MAP kinase pathways alone by transduction of MKK6CA accelerated terminal chondrocytic differentiation, leading to type X collagen expression and enhanced mineralization. Overexpression of Smad1 prevented MKK6CA-induced type X collagen expression and maintained type II collagen expression. In a mouse model of osteoarthritis, activated p38 expression as well as type X collagen staining was detected in osteochondrophytes and marginal synovial cells. These results suggest that SFs can be differentiated into chondrocytes via ALK3 activation and that stimulating Smad pathways and controlling p38 activation at the proper level can be a good therapeutic strategy for maintaining the healthy joint homeostasis and treating degenerative joint disorders.

Authors

Hiroaki Seto, Satoshi Kamekura, Toshiki Miura, Aiichiro Yamamoto, Hirotaka Chikuda, Toru Ogata, Hisatada Hiraoka, Hiromi Oda, Kozo Nakamura, Hisashi Kurosawa, Ung-il Chug, Hiroshi Kawaguchi, Sakae Tanaka

×

Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways
Natalie A. Sims, … , Matthias Ernst, T. John Martin
Natalie A. Sims, … , Matthias Ernst, T. John Martin
Published February 1, 2004
Citation Information: J Clin Invest. 2004;113(3):379-389. https://doi.org/10.1172/JCI19872.
View: Text | PDF

Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways

  • Text
  • PDF
Abstract

The gp130-dependent cytokines, which signal through at least two intracellular pathways, regulate osteoclast and osteoblast formation. To define their roles in regulating bone mass, we analyzed mice in which gp130 signaling via either the signal transducer and activator of transcription (STAT) 1/3 (gp130ΔSTAT/ΔSTAT) or SHP2/ras/MAPK (gp130Y757F/Y757F) pathway was attenuated. In gp130ΔSTAT/ΔSTAT mice, trabecular bone volume (BV/TV) and turnover were normal, but bone length was reduced by premature growth plate closure, indicating an essential role for gp130-STAT1/3 signaling in chondrocyte differentiation. In contrast, while bone size was normal in gp130Y757F/Y757F mice, BV/TV was reduced due to high bone turnover, indicated by high osteoclast surface/bone surface (OcS/BS) and osteoblast surface/bone surface (ObS/BS). Furthermore, generation of functional osteoclasts from bone marrow of gp130Y757F/Y757F mice was elevated, revealing that while gp130 family cytokines stimulate osteoclastogenesis through the osteoblast lineage, gp130, via SHP2/Ras/MAPK, inhibits osteoclastogenesis in a cell lineage–autonomous manner. Genetic ablation of IL-6 in gp130Y757F/Y757F mice exacerbated this osteopenia by reducing ObS/BS without affecting OcS/BS. Thus, while IL-6 is critical for high bone formation in gp130Y757F/Y757F mice, it is not involved in the increased osteoclastogenesis. In conclusion, gp130 is essential for normal bone growth and trabecular bone mass, with balanced regulation depending on selective activation of STAT1/3 and SHP2/ras/MAPK, respectively. Furthermore, the latter pathway can directly inhibit osteoclastogenesis in vivo.

Authors

Natalie A. Sims, Brendan J. Jenkins, Julian M.W. Quinn, Akira Nakamura, Markus Glatt, Matthew T. Gillespie, Matthias Ernst, T. John Martin

×

Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival
Christa Maes, … , Roger Bouillon, Geert Carmeliet
Christa Maes, … , Roger Bouillon, Geert Carmeliet
Published January 15, 2004
Citation Information: J Clin Invest. 2004;113(2):188-199. https://doi.org/10.1172/JCI19383.
View: Text | PDF

Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

  • Text
  • PDF
Abstract

VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

Authors

Christa Maes, Ingrid Stockmans, Karen Moermans, Riet Van Looveren, Nico Smets, Peter Carmeliet, Roger Bouillon, Geert Carmeliet

×

A crucial role for thiol antioxidants in estrogen-deficiency bone loss
Jenny M. Lean, … , Zoë L. Urry, Timothy J. Chambers
Jenny M. Lean, … , Zoë L. Urry, Timothy J. Chambers
Published September 15, 2003
Citation Information: J Clin Invest. 2003;112(6):915-923. https://doi.org/10.1172/JCI18859.
View: Text | PDF

A crucial role for thiol antioxidants in estrogen-deficiency bone loss

  • Text
  • PDF
Abstract

The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption.

Authors

Jenny M. Lean, Julie T. Davies, Karen Fuller, Christopher J. Jagger, Barrie Kirstein, Geoffrey A. Partington, Zoë L. Urry, Timothy J. Chambers

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone biology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts