Research Article
D Wu, J Yang, W M Pardridge
Submitter: Berislav V. Zlokovic 1,2, Thomas Wisniewski3, Lary C. Walker4, Jorge Ghiso3 and Blas Frangione3 | zlokovic@hsc.usc.edu
1Neurosurg.2Physiol., USC Sch. Med., 3 Pathol., NYU Med. Cntr., 4Neurosci. Ther., Parke- Davis
Published December 1, 1998
This article elegantly demonstrates that the monoclonal antibody against the blood-brain barrier (BBB) insulin receptor can be utilized as a piggy-back ride to deliver Alzheimer's amyloid ß peptide (Aß) to the brain of adult Rhesus monkey.(1) However, other plausible mechanisms for Aß interactions with different BBB receptors and/or binding proteins that all may significantly influence its transport within the central nervous system (CNS) are not discussed.
Recent studies with Aß1-40, Aß1-42 and AßQ22 (the Dutch mutant) indicated that specific mechanisms at the BBB play a major role in regulating Aß concentrations in cerebral vasculature and brain.(2) Circulating Aß may increase the level of soluble Aß in the CNS(3- 5)followed by deposition onto pre-existing vascular amyloid lesions in non -human primates.(6,7) Two specific cell- surface acceptor sites for Aß on brain endothelial cells, i.e., the receptor for advanced glycation end products (RAGE)(8) and class A scavenger receptor (SR),(9) participate in binding and internalization of free Aß at the BBB, while RAGE is involved in transcytosis of Aß1-40 across human BBB in vitro.(10) The gp330/megalin and possibly other members of the low density lipoprotein receptor family, i.e., LRP-1, LDLR and VLDLR, participate in brain microvascular accumulation and transfer of blood-borne Aß complexed with apolipoproteins J and E4 (apoJ, apoE4) delipidated and/or incorporated into lipoprotein particles.(11,12) The BBB permeability to Aß-apoJ via gp330/megalin was high,(11) and transport saturable at physiological plasma levels of apoJ.(13) RAGE, SR and several adhesion molecules mediate brain endothelial damage by free Aß.(8,9,14,15)
Brain capillary binding and specific Aß transport are enhanced in aged squirrel monkey with cerebral amyloid angiopathy (CAA)(7), and in an in vitro model of the BBB from AD patients.(16) Aged Rhesus monkeys do not frequently develop CAA, but have extensive parenchymal Aß deposits.(17) The concentration of Aß in the CNS and cerebral vasculature increases with age and may reach the neurotoxic level with concomitant development of the disease process such as AD.(18) In the CNS of healthy young individuals, the metabolism of Aß in brain and rapid clearance from the cerebrospinal fluid may counteract the BBB transport.(19) However, the aging process and the risk factors for AD (e.g., presenilin genes, apoE4 genotype, etc.) may affect trafficking of Aß in the CNS and at the BBB with an impact on the development of cerebral amyloidosis and AD pathology.(20)
REFERENCES
1. Wu, D., J. Yang, and W.M. Pardridge. 1997. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J. Clin. Invest. 100:1804-1812.
2. Zlokovic, B. V. 1997. Can blood-brain barrier play a role in the development of cerebral amyloidosis and Alzheimer's disease pathology. Neurobiol. Dis. 4(1): 23-26.
3. Zlokovic, B. V., J. Ghiso, J.B. Mackic, J.G. McComb, M.H. Weiss, and B. Frangione. 1993. Blood-brain barrier transport of circulating Alzheimer's amyloid ß.Biochem. Biophys. Res. Commun. 197: 1034-1040.
4. Maness, L. M., W.A. Banks, M.B. Podlisny, D.J. Selkoe, and A.J. Kastin. 1994. Passage of human amyloid-ß protein 1-40 across the murine blood- brain barrier. Life Sci. 55: 1643-1650.
5. Poduslo, J.F., G.L. Curran, J.J. Haggard, A.L. Biere, and D.J. Selkoe. 1997. Permeability and residual plasma volume of human, Dutch variant, and rat amyloid ß-protein 1-40 at the blood- brain barrier. Neurobiol. Dis. 4(1): 27-34.
6. Ghilardi, J. R., M. Catton, E.R. Stimson, S. Rogers, L.C. Walker, J.E. Maggio, and P.W. Mantyh. 1996. Intra-arterial infusion of [125I]Aß1-40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport.7: 2607-2611.
7. Mackic, J.B., M.H. Weiss, W. Miao, J. Ghiso, M. Calero, J. Bading, B. Frangione, Zlokovic, B.V. 1997. Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer's amyloid-ß peptide in aged squirrel monkey with cerebral amyloid angiopathy. J. Neurochem. 70: 210-215.
8.Yan, S. D., X. Chen, J. Fu, M. Chen. H. Zhu, A. Roher, T. Slattery, L. Zhao, M. Nagashima, J. Morser, A. Migheli, P. Nawroth, D. Ster., and A.M. Schmidt. 1996. RAGE and amyloid-ß peptide neurotoxicity in Alzheimer's disease. Nature. 382: 685-691.
9. El Khoury, J., S. E. Hickman, C. A. Thomas, L. Cao, S.C. Silverstein, and J.D. Loike. 1996. Scavenger receptor-mediated adhesion of microglia to ß-amyloid fibrils. Nature. 382: 716-719.
10. Mackic J.B., M. Stins, J. G. McComb, M. Calero, J. Ghiso, K. S. Kim, S. D. Yan,.D. Stern, A. M. Schmidt, B. Frangione, and B. V. Zlokovic (1998) Human blood-brain barrier receptors for Alzheimer's amyloid-ß 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102(4): 734-743.
11. Zlokovic, B. V., Martel, C. L., Matsubara, E., McComb, J. G., Zheng, G., McCluskey, R. T., Frangione, B. and Ghiso, J. 1996. Glycoprotein 330/megalin: Probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer's disease amyloid b at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. USA. 93: 4229-4236.
12. Martel, C.L., J.B. Mackic, E. Matsubara, S. Governale, C. Miguel, W. Miao, J.G. McComb, B. Frangione, J. Ghiso, and B.V. Zlokovic. 1997. Isoform-specific effects of apolipoproteins E2, E3, E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating alzheimer's amyloid ß. J. Neurochem. 69: 1995-2004.
13. Shayo, M., McLay, R. N., Kastin, A. J. and Banks, W. A. 1997. The putative blood-brain barrier transporter for the ß-amyloid binding protein apolipoprotein J is saturated at physiological concentrations. Life Sci.60 (7): 115-118.
14. Thomas, T., G. Thomas, C. McLendon, T. Sutton, and M. Mullan. 1996. ß -Amyloid- mediated vasoactivity and vascular endothelial damage. Nature 380: 168-171.
15. Thomas, T., E.T. Sutton, M.W. Bryant, and J.A.G. Rhodin. 1997. In vivo vascular damage, leukocyte activation and inflammatory response induced by ß-amyloid. J. Submicrosc. Cytol. Pathol. 29(3): 293-304.
16. Zlokovic, B.V., J.B. Mackic, M. Stins, J.G. McComb, S.D. Yan, D. Stern, J. Ghiso, B. Frangione, and K.S. Kim. 1997. Binding and transport of amyloid-ß peptide at the human blood- brain barrier in vitro. Soc. Neurosci. Abs. 23: 2235.
17. Walker, L. C. 1997. Animal models of cerebral ß-amyloid angiopathy. Brain Res. Rev. 25: 70-84.
18. Ghiso, J., T. Wisniewski, and B. Frangione. 1994. Unifying features of systemic and cerebral amyloidosis. Mol. Neurobiol. 8: 49-64.
19. Ghersi-Egea, J.F., P.D. Gorevic, J. Ghiso, B.F. Frangione, C.S. Patlak, and J.D. Fenstermacher. 1996. Fate of cerebrospinal fluid-borne amyloid ß-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J. Neurochem. 67: 880-883.
20. Wisniewski T., J. Ghiso, and B. Frangione. 1997. Biology of Aß amyloid in Alzheimer's Disease. Neurobiol. Dis. 4: 311-328.