Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Hemeoxygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy.
C H Acevedo, A Ahmed
C H Acevedo, A Ahmed
Published March 1, 1998
Citation Information: J Clin Invest. 1998;101(5):949-955. https://doi.org/10.1172/JCI927.
View: Text | PDF
Research Article

Hemeoxygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy.

  • Text
  • PDF
Abstract

Nitric oxide was proposed as an endogenous inhibitor of myometrial contractility during pregnancy. Carbon monoxide (CO) like nitric oxide increases cGMP and is generated during the degradation of heme to biliverdin IX by hemeoxygenases (HO). Here we report that the expression of both HO-1 (inducible) and HO-2 (constitutive) were > 15-fold higher in pregnant myometrium compared to nonpregnant myometrium (n = 4, P < 0.001, P < 0.005, respectively). Moreover, the activation of the HO-CO pathway by the HO inducer, hemin (10 microM), completely inhibited spontaneous contractility (n = 3). Oxytocin-stimulated contractions (n = 5) were also significantly reduced (P < 0.05) in myometrial strips mounted for isometric recording under 2 g tension in Krebs solution. Reverse transcription-PCR analysis revealed that mRNA encoding HO-1 and HO-2 was undetected in explant cultures of nonlaboring pregnant myometrium under basal conditions, however, exposure to progesterone, but not estradiol-17beta, induced the expression of HO-1 and HO-2 mRNAs. Progesterone also significantly induced HO-1 protein synthesis (n = 4, P < 0.001) while estradiol-17beta had no effect (n = 4). In term (37-42-wk gestation) nonlaboring myometrial explants, CO production was stimulated by progesterone (10(-6) M) (n = 2) and hemin (10 microM) (n = 3) after 2 h of incubation and the effect of hemin was inhibited by 1 h of preincubation with the HO inhibitor tin protoporphyrin IX (20 microM). This study clearly demonstrates the expression of HO in the human myometrium and shows that its induction produces CO that limits uterine contractility in pregnant myometrium indicating a role for the HO-CO-cGMP pathway in the maintenance of the quiescent state of the uterus during pregnancy.

Authors

C H Acevedo, A Ahmed

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts