Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model
Caroline F. Bruinsma, … , Chris I. De Zeeuw, Ype Elgersma
Caroline F. Bruinsma, … , Chris I. De Zeeuw, Ype Elgersma
Published October 20, 2015
Citation Information: J Clin Invest. 2015;125(11):4305-4315. https://doi.org/10.1172/JCI83541.
View: Text | PDF
Research Article Neuroscience

Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model

  • Text
  • PDF
Abstract

Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am–/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS.

Authors

Caroline F. Bruinsma, Martijn Schonewille, Zhenyu Gao, Eleonora M.A. Aronica, Matthew C. Judson, Benjamin D. Philpot, Freek E. Hoebeek, Geeske M. van Woerden, Chris I. De Zeeuw, Ype Elgersma

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts