Chronic pain is a major clinical problem, yet the mechanisms underlying the transition from acute to chronic pain remain poorly understood. In mice, reduced expression of GPCR kinase 2 (GRK2) in nociceptors promotes cAMP signaling to the guanine nucleotide exchange factor EPAC1 and prolongs the PGE2-induced increase in pain sensitivity (hyperalgesia). Here we hypothesized that reduction of GRK2 or increased EPAC1 in dorsal root ganglion (DRG) neurons would promote the transition to chronic pain. We used 2 mouse models of hyperalgesic priming in which the transition from acute to chronic PGE2-induced hyperalgesia occurs. Hyperalgesic priming with carrageenan induced a sustained decrease in nociceptor GRK2, whereas priming with the PKCε agonist ΨεRACK increased DRG EPAC1. When either GRK2 was increased in vivo by viral-based gene transfer or EPAC1 was decreased in vivo, as was the case for mice heterozygous for
Huijing Wang, Cobi J. Heijnen, Cindy T.J. van Velthoven, Hanneke L.D.M. Willemen, Yoshihiro Ishikawa, Xinna Zhang, Anil K. Sood, Anne Vroon, Niels Eijkelkamp, Annemieke Kavelaars
Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.
Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.