Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mitochondrial dysfunction in patients with primary congenital insulin resistance
Alison Sleigh, … , Robert K. Semple, David B. Savage
Alison Sleigh, … , Robert K. Semple, David B. Savage
Published May 9, 2011
Citation Information: J Clin Invest. 2011;121(6):2457-2461. https://doi.org/10.1172/JCI46405.
View: Text | PDF
Brief Report Metabolism

Mitochondrial dysfunction in patients with primary congenital insulin resistance

  • Text
  • PDF
Abstract

Mitochondrial dysfunction is associated with insulin resistance and type 2 diabetes. It has thus been suggested that primary and/or genetic abnormalities in mitochondrial function may lead to accumulation of toxic lipid species in muscle and elsewhere, impairing insulin action on glucose metabolism. Alternatively, however, defects in insulin signaling may be primary events that result in mitochondrial dysfunction, or there may be a bidirectional relationship between these phenomena. To investigate this, we examined mitochondrial function in patients with genetic defects in insulin receptor (INSR) signaling. We found that phosphocreatine recovery after exercise, a measure of skeletal muscle mitochondrial function in vivo, was significantly slowed in patients with INSR mutations compared with that in healthy age-, fitness-, and BMI-matched controls. These findings suggest that defective insulin signaling may promote mitochondrial dysfunction. Furthermore, consistent with previous studies of mouse models of mitochondrial dysfunction, basal and sleeping metabolic rates were both significantly increased in genetically insulin-resistant patients, perhaps because mitochondrial dysfunction necessitates increased nutrient oxidation in order to maintain cellular energy levels.

Authors

Alison Sleigh, Philippa Raymond-Barker, Kerrie Thackray, David Porter, Mensud Hatunic, Alessandra Vottero, Christine Burren, Catherine Mitchell, Martin McIntyre, Soren Brage, T. Adrian Carpenter, Peter R. Murgatroyd, Kevin M. Brindle, Graham J. Kemp, Stephen O’Rahilly, Robert K. Semple, David B. Savage

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts