Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Mitochondrial dysfunction in patients with primary congenital insulin resistance
Alison Sleigh, … , Robert K. Semple, David B. Savage
Alison Sleigh, … , Robert K. Semple, David B. Savage
Published May 9, 2011
Citation Information: J Clin Invest. 2011;121(6):2457-2461. https://doi.org/10.1172/JCI46405.
View: Text | PDF
Brief Report Metabolism

Mitochondrial dysfunction in patients with primary congenital insulin resistance

  • Text
  • PDF
Abstract

Mitochondrial dysfunction is associated with insulin resistance and type 2 diabetes. It has thus been suggested that primary and/or genetic abnormalities in mitochondrial function may lead to accumulation of toxic lipid species in muscle and elsewhere, impairing insulin action on glucose metabolism. Alternatively, however, defects in insulin signaling may be primary events that result in mitochondrial dysfunction, or there may be a bidirectional relationship between these phenomena. To investigate this, we examined mitochondrial function in patients with genetic defects in insulin receptor (INSR) signaling. We found that phosphocreatine recovery after exercise, a measure of skeletal muscle mitochondrial function in vivo, was significantly slowed in patients with INSR mutations compared with that in healthy age-, fitness-, and BMI-matched controls. These findings suggest that defective insulin signaling may promote mitochondrial dysfunction. Furthermore, consistent with previous studies of mouse models of mitochondrial dysfunction, basal and sleeping metabolic rates were both significantly increased in genetically insulin-resistant patients, perhaps because mitochondrial dysfunction necessitates increased nutrient oxidation in order to maintain cellular energy levels.

Authors

Alison Sleigh, Philippa Raymond-Barker, Kerrie Thackray, David Porter, Mensud Hatunic, Alessandra Vottero, Christine Burren, Catherine Mitchell, Martin McIntyre, Soren Brage, T. Adrian Carpenter, Peter R. Murgatroyd, Kevin M. Brindle, Graham J. Kemp, Stephen O’Rahilly, Robert K. Semple, David B. Savage

×

Full Text PDF | Download (297.96 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts