Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
Rui-Hong Wang, … , Oksana Gavrilova, Chu-Xia Deng
Rui-Hong Wang, … , Oksana Gavrilova, Chu-Xia Deng
Published October 3, 2011
Citation Information: J Clin Invest. 2011;121(11):4477-4490. https://doi.org/10.1172/JCI46243.
View: Text | PDF
Research Article Metabolism

Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance

  • Text
  • PDF
Abstract

Insulin resistance is a major risk factor for type 2 diabetes mellitus. The protein encoded by the sirtuin 1 (Sirt1) gene, which is a mouse homolog of yeast Sir2, is implicated in the regulation of glucose metabolism and insulin sensitivity; however, the underlying mechanism remains elusive. Here, using mice with a liver-specific null mutation of Sirt1, we have identified a signaling pathway involving Sirt1, Rictor (a component of mTOR complex 2 [mTorc2]), Akt, and Foxo1 that regulates gluconeogenesis. We found that Sirt1 positively regulates transcription of the gene encoding Rictor, triggering a cascade of phosphorylation of Akt at S473 and Foxo1 at S253 and resulting in decreased transcription of the gluconeogenic genes glucose-6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (Pepck). Liver-specific Sirt1 deficiency caused hepatic glucose overproduction, chronic hyperglycemia, and increased ROS production. This oxidative stress disrupted mTorc2 and impaired mTorc2/Akt signaling in other insulin-sensitive organs, leading to insulin resistance that could be largely reversed with antioxidant treatment. These data delineate a pathway through which Sirt1 maintains insulin sensitivity and suggest that treatment with antioxidants might provide protection against progressive insulin resistance in older human populations.

Authors

Rui-Hong Wang, Hyun-Seok Kim, Cuiying Xiao, Xiaoling Xu, Oksana Gavrilova, Chu-Xia Deng

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts