Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration
Monica Dentice, … , P. Reed Larsen, Domenico Salvatore
Monica Dentice, … , P. Reed Larsen, Domenico Salvatore
Published October 11, 2010
Citation Information: J Clin Invest. 2010;120(11):4021-4030. https://doi.org/10.1172/JCI43670.
View: Text | PDF
Research Article Muscle biology

The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration

  • Text
  • PDF
Abstract

The active thyroid hormone 3,5,3′ triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration. Indeed, D2-mediated increases in T3 were essential for the enhanced transcription of myogenic differentiation 1 (MyoD) and for execution of the myogenic program. Conversely, the expression of T3-dependent genes was reduced and after injury regeneration markedly delayed in muscles of mice null for the gene encoding D2 (Dio2), despite normal circulating T3 concentrations. Forkhead box O3 (FoxO3) was identified as a key molecule inducing D2 expression and thereby increasing intracellular T3 production. Accordingly, FoxO3-depleted primary myoblasts also had a differentiation deficit that could be rescued by high levels of T3. In conclusion, the FoxO3/D2 pathway selectively enhances intracellular active thyroid hormone concentrations in muscle, providing a striking example of how a circulating hormone can be tissue-specifically activated to influence development locally.

Authors

Monica Dentice, Alessandro Marsili, Raffaele Ambrosio, Ombretta Guardiola, Annarita Sibilio, Ji-Hye Paik, Gabriella Minchiotti, Ronald A. DePinho, Gianfranco Fenzi, P. Reed Larsen, Domenico Salvatore

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts