Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Submit a Letter to the Editor

The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction
Jeanna C. Perman, … , Sven-Olof Olofsson, Jan Borén
Jeanna C. Perman, … , Sven-Olof Olofsson, Jan Borén
Published June 13, 2011
Citation Information: J Clin Invest. 2011;121(7):2625-2640. https://doi.org/10.1172/JCI43068.
View: Text | PDF
Research Article Cardiology

The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction

  • Text
  • PDF
Abstract

Impaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins. Furthermore, VLDLR expression was higher in ischemic compared with nonischemic left ventricles from human hearts and was correlated with the total lipid droplet area in the cardiomyocytes. Importantly, Vldlr–/– mice showed improved survival and decreased infarct area following an induced myocardial infarction. ER stress, which leads to apoptosis, is known to be involved in ischemic heart disease. We found that ischemia-induced ER stress and apoptosis in mouse hearts were reduced in Vldlr–/– mice and in mice treated with antibodies specific for VLDLR. These findings suggest that VLDLR-induced lipid accumulation in the ischemic heart worsens survival by increasing ER stress and apoptosis.

Authors

Jeanna C. Perman, Pontus Boström, Malin Lindbom, Ulf Lidberg, Marcus StÅhlman, Daniel Hägg, Henrik Lindskog, Margareta Scharin Täng, Elmir Omerovic, Lillemor Mattsson Hultén, Anders Jeppsson, Petur Petursson, Johan Herlitz, Gunilla Olivecrona, Dudley K. Strickland, Kim Ekroos, Sven-Olof Olofsson, Jan Borén

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts