Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain
Rashid Deane, … , David M. Holtzman, Berislav V. Zlokovic
Rashid Deane, … , David M. Holtzman, Berislav V. Zlokovic
Published November 13, 2008
Citation Information: J Clin Invest. 2008;118(12):4002-4013. https://doi.org/10.1172/JCI36663.
View: Text | PDF
Research Article Neuroscience

apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain

  • Text
  • PDF
Abstract

Neurotoxic amyloid β peptide (Aβ) accumulates in the brains of individuals with Alzheimer disease (AD). The APOE4 allele is a major risk factor for sporadic AD and has been associated with increased brain parenchymal and vascular amyloid burden. How apoE isoforms influence Aβ accumulation in the brain has, however, remained unclear. Here, we have shown that apoE disrupts Aβ clearance across the mouse blood-brain barrier (BBB) in an isoform-specific manner (specifically, apoE4 had a greater disruptive effect than either apoE3 or apoE2). Aβ binding to apoE4 redirected the rapid clearance of free Aβ40/42 from the LDL receptor–related protein 1 (LRP1) to the VLDL receptor (VLDLR), which internalized apoE4 and Aβ-apoE4 complexes at the BBB more slowly than LRP1. In contrast, apoE2 and apoE3 as well as Aβ-apoE2 and Aβ-apoE3 complexes were cleared at the BBB via both VLDLR and LRP1 at a substantially faster rate than Aβ-apoE4 complexes. Astrocyte-secreted lipo-apoE2, lipo-apoE3, and lipo-apoE4 as well as their complexes with Aβ were cleared at the BBB by mechanisms similar to those of their respective lipid-poor isoforms but at 2- to 3-fold slower rates. Thus, apoE isoforms differentially regulate Aβ clearance from the brain, and this might contribute to the effects of APOE genotype on the disease process in both individuals with AD and animal models of AD.

Authors

Rashid Deane, Abhay Sagare, Katie Hamm, Margaret Parisi, Steven Lane, Mary Beth Finn, David M. Holtzman, Berislav V. Zlokovic

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts