Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Submit a Letter to the Editor

One-stop-shop tumor imaging: buy hypoxia, get lactate free
Ashley A. Manzoor, … , Thies Schroeder, Mark W. Dewhirst
Ashley A. Manzoor, … , Thies Schroeder, Mark W. Dewhirst
Published April 22, 2008
Citation Information: J Clin Invest. 2008;118(5):1616-1619. https://doi.org/10.1172/JCI35543.
View: Text | PDF
Commentary

One-stop-shop tumor imaging: buy hypoxia, get lactate free

  • Text
  • PDF
Abstract

The ability to noninvasively assess physiological changes in solid tumors is desired for its diagnostic and therapeutic potential. In this issue of JCI, Matsumoto and colleagues reveal their development and use of a novel imaging approach, combining pulsed electron paramagnetic resonance imaging (EPRI) with conventional MRI to image squamous cell carcinoma tumor–bearing mice (see the related article beginning on page 1965). This method provides coregistered images of oxygenation and blood volume/flow with the underlying anatomy and concentrations of metabolites such as lactate and choline. This technique, combining functional and anatomic imaging, shows immediate preclinical applicability in monitoring factors that control tumor hypoxia and metabolism and may have future clinical potential for monitoring tumor response to treatment.

Authors

Ashley A. Manzoor, Thies Schroeder, Mark W. Dewhirst

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts