Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway
Igor Matushansky, … , Robert G. Maki, Carlos Cordon-Cardo
Igor Matushansky, … , Robert G. Maki, Carlos Cordon-Cardo
Published October 18, 2007
Citation Information: J Clin Invest. 2007;117(11):3248-3257. https://doi.org/10.1172/JCI31377.
View: Text | PDF
Research Article Oncology

Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway

  • Text
  • PDF
Abstract

Malignant fibrous histiocytoma (MFH), now termed high-grade undifferentiated pleomorphic sarcoma, is a commonly diagnosed mesenchymal tumor, yet both the underlying molecular mechanisms of tumorigenesis and cell of origin remain unidentified. We present evidence demonstrating that human mesenchymal stem cells (hMSCs) are the progenitors of MFH. DKK1, a Wnt inhibitor and mediator of hMSC proliferation, is overexpressed in MFH. Using recombinant proteins, antibody depletion, and siRNA knockdown strategies of specific Wnt elements, we show that DKK1 inhibits hMSC commitment to differentiation via Wnt2/β-catenin canonical signaling and that Wnt5a/JNK noncanonical signaling regulates a viability checkpoint independent of Dkk1. Finally, we illustrate that hMSCs can be transformed via inhibition of Wnt signaling to form MFH-like tumors in nude mice, and conversely, MFH cells in which Wnt signaling is appropriately reestablished can differentiate along mature connective tissue lineages. Our results provide mechanistic insights regarding the cell of origin of MFH, establish what we believe is a novel tumor suppressor role for Wnt signaling, and identify a potential therapeutic differentiation strategy for sarcomas.

Authors

Igor Matushansky, Eva Hernando, Nicholas D. Socci, Joslyn E. Mills, Tulio A. Matos, Mark A. Edgar, Samuel Singer, Robert G. Maki, Carlos Cordon-Cardo

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts