Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

M-CSF mediates TNF-induced inflammatory osteolysis
Hideki Kitaura, … , F. Patrick Ross, Steven L. Teitelbaum
Hideki Kitaura, … , F. Patrick Ross, Steven L. Teitelbaum
Published December 1, 2005
Citation Information: J Clin Invest. 2005;115(12):3418-3427. https://doi.org/10.1172/JCI26132.
View: Text | PDF
Research Article Bone biology

M-CSF mediates TNF-induced inflammatory osteolysis

  • Text
  • PDF
Abstract

TNF-α is the dominant cytokine in inflammatory osteolysis. Using mice whose BM stromal cells and osteoclast precursors are chimeric for the presence of TNF receptors, we found that both cell types mediated the cytokine’s osteoclastogenic properties. The greater contribution was made, however, by stromal cells that express the osteoclastogenic cytokine M-CSF. TNF-α stimulated M-CSF gene expression, in vivo, only in the presence of TNF-responsive stromal cells. M-CSF, in turn, induced the key osteoclastogenic cytokine receptor, receptor activator of NF-κB (RANK), in osteoclast precursors. In keeping with the proproliferative and survival properties of M-CSF, TNF-α enhanced osteoclast precursor number only in the presence of stromal cells bearing TNF receptors. To determine the clinical relevance of these observations, we induced inflammatory arthritis in wild-type mice and treated them with a mAb directed against the M-CSF receptor, c-Fms. Anti–c-Fms mAb selectively and completely arrested the profound pathological osteoclastogenesis attending this condition, the significance of which is reflected by similar blunting of the in vivo bone resorption marker tartrate-resistant acid phosphatase 5b (TRACP 5b). Confirming that inhibition of the M-CSF signaling pathway targets TNF-α, anti–c-Fms also completely arrested osteolysis in TNF-injected mice with nominal effect on macrophage number. M-CSF and its receptor, c-Fms, therefore present as candidate therapeutic targets in states of inflammatory bone erosion.

Authors

Hideki Kitaura, Ping Zhou, Hyun-Ju Kim, Deborah V. Novack, F. Patrick Ross, Steven L. Teitelbaum

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts