Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury.
Y Cheng, … , E M Johnson, D M Holtzman
Y Cheng, … , E M Johnson, D M Holtzman
Published May 1, 1998
Citation Information: J Clin Invest. 1998;101(9):1992-1999. https://doi.org/10.1172/JCI2169.
View: Text | PDF
Research Article

Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury.

  • Text
  • PDF
Abstract

Programmed cell death (apoptosis) is a normal process in the developing nervous system. Recent data suggest that certain features seen in the process of programmed cell death may be favored in the developing versus the adult brain in response to different brain injuries. In a well characterized model of neonatal hypoxia-ischemia, we demonstrate marked but delayed cell death in which there is prominent DNA laddering, TUNEL-labeling, and nuclei with condensed chromatin. Caspase activation, which is required in many cases of apoptotic cell death, also followed a delayed time course after hypoxia-ischemia. Administration of boc-aspartyl(OMe)-fluoromethylketone, a pan-caspase inhibitor, was significantly neuroprotective when given by intracerebroventricular injection 3 h after cerebral hypoxia-ischemia. In addition, systemic injections of boc-aspartyl(OMe)-fluoromethylketone also given in a delayed fashion, resulted in significant neuroprotection. These findings suggest that caspase inhibitors may be able to provide benefit over a prolonged therapeutic window after hypoxic-ischemic events in the developing brain, a major contributor to static encephalopathy and cerebral palsy.

Authors

Y Cheng, M Deshmukh, A D'Costa, J A Demaro, J M Gidday, A Shah, Y Sun, M F Jacquin, E M Johnson, D M Holtzman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts