Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells
Grace Soong, … , Robert Adamo, Alice Prince
Grace Soong, … , Robert Adamo, Alice Prince
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1482-1489. https://doi.org/10.1172/JCI20773.
View: Text | PDF
Article Immunology

TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells

  • Text
  • PDF
Abstract

Toll-like receptors (TLRs) mediate host responses to bacterial gene products. As the airway epithelium is potentially exposed to many diverse inhaled bacteria, TLRs involved in defense of the airways must be broadly responsive, available at the exposed apical surface of the cells, and highly regulated to prevent activation following trivial encounters with bacteria. We demonstrate that TLR2 is enriched in caveolin-1–associated lipid raft microdomains presented on the apical surface of airway epithelial cells after bacterial infection. These receptor complexes include myeloid differentiation protein (MyD88), interleukin-1 receptor–activated kinase-1, and TNF receptor–associated factor 6. The signaling capabilities of TLR2 are amplified through its association with the asialoganglioside gangliotetraosylceramide (Galβ1,2GalNAcβ1,4Galβ1,4Glcβ1,1Cer), which has receptor function itself for many pulmonary pathogens. Ligation of either TLR2 or asialoGM1 by ligands with specificity for either receptor, by Pseudomonas aeruginosa, or by Staphylococcus aureus stimulates IL-8 production through activation of NF-κB, as mediated by TLR2 and MyD88. Thus, TLR2 in association with asialo-glycolipids presented within the context of lipid rafts provides a broadly responsive signaling complex at the apical surfaces of airway cells to initiate the host response to potential bacterial infection.

Authors

Grace Soong, Bharat Reddy, Sach Sokol, Robert Adamo, Alice Prince

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts