Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy
Matthew T. Wheeler, … , Sara Zarnegar, Elizabeth M. McNally
Matthew T. Wheeler, … , Sara Zarnegar, Elizabeth M. McNally
Published March 1, 2004
Citation Information: J Clin Invest. 2004;113(5):668-675. https://doi.org/10.1172/JCI20410.
View: Text | PDF
Article Cardiology

Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy

  • Text
  • PDF
Abstract

Vascular spasm is a poorly understood but critical biomedical process because it can acutely reduce blood supply and tissue oxygenation. Cardiomyopathy in mice lacking γ-sarcoglycan or δ-sarcoglycan is characterized by focal damage. In the heart, sarcoglycan gene mutations produce regional defects in membrane permeability and focal degeneration, and it was hypothesized that vascular spasm was responsible for this focal necrosis. Supporting this notion, vascular spasm was noted in coronary arteries, and disruption of the sarcoglycan complex was observed in vascular smooth muscle providing a molecular mechanism for spasm. Using a transgene rescue strategy in the background of sarcoglycan-null mice, we replaced cardiomyocyte sarcoglycan expression. Cardiomyocyte-specific sarcoglycan expression was sufficient to correct cardiac focal degeneration. Intriguingly, successful restoration of the cardiomyocyte sarcoglycan complex also eliminated coronary artery vascular spasm, while restoration of smooth muscle sarcoglycan in the background of sarcoglycan-null alleles did not. This mechanism, whereby tissue damage leads to vascular spasm, can be partially corrected by NO synthase inhibitors. Therefore, we propose that cytokine release from damaged cardiomyocytes can feed back to produce vascular spasm. Moreover, vascular spasm feeds forward to produce additional cardiac damage.

Authors

Matthew T. Wheeler, Michael J. Allikian, Ahlke Heydemann, Michele Hadhazy, Sara Zarnegar, Elizabeth M. McNally

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts