Atherosclerosis arises from disrupted cholesterol metabolism, notably impaired macrophage cholesterol efflux leading to foam cell formation. Through single-cell and bulk RNA sequencing, we identified Listerin as a regulator of macrophage cholesterol metabolism. Listerin expression increased during atherosclerosis progression in humans and rodents. Its deficiency suppressed cholesterol efflux, promoted foam cell formation, and exacerbated plaque features (macrophage infiltration, lipid deposition, necrotic cores) in macrophage-specific knockout mice. Conversely, Listerin overexpression attenuated these atherosclerotic manifestations. Mechanistically, Listerin stabilizes ABCA1, a key cholesterol efflux mediator, by catalyzing K63-linked polyubiquitination at residues K1884/K1957, countering ESCRT-mediated lysosomal degradation of ABCA1 induced by oxLDL. ABCA1 agonist Erythrodiol restored cholesterol efflux in Listerin-deficient macrophages, while ABCA1 knockout abolished Listerin's effects in THP-1 cells. This study establishes Listerin as a protective factor in atherosclerosis via post-translational stabilization of ABCA1, offering a potential therapeutic strategy targeting ABCA1 ubiquitination to enhance cholesterol efflux.
Lei Cao, Jie Zhang, Liwen Yu, Wei Yang, Wenqian Qi, Ruiqing Ren, Yapeng Liu, Yonghao Hou, Yu Cao, Qian Li, Xiaohong Wang, Zhengguo zhang, Bo Li, Wenhai Sui, Yun Zhang, Chengjiang Gao, Cheng Zhang, Meng Zhang
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.