The role of type 1 conventional dendritic cells (cDC1) in tolerance induction to solid organ allografts is unknown and important for strategies that seek to prolong allograft viability. Using a murine model deficient in cDC1s, we report cDC1s are required for donor antigen and costimulation blockade (DST + CoB) tolerance induction and survival of cardiac allografts. cDC1 deficiency led to decreases in CD4+CD25+FoxP3+ T cells within both allograft and spleen tissue of transplant recipients and this was found to be antigen specific. Donor antigen stimulation induced TGF-β1 expression both in vivo cDC1 and in vitro Flt3L derived cDC1. Genetic deletion of Tgfβ1 in cDC1s prevented induction of antigen specific CD4+CD25+FoxP3+ T cells and was associated with cardiac allograft rejection. In parallel, single-cell RNA sequencing and metabolic analysis revealed upregulation of cDC1 mitochondrial metabolic signatures after in vivo exposure to DST + CoB. Genetic inactivation of cDC1 mitochondrial metabolism reduced expression of cDC1 TGF-β1, decreased antigen specific T regulatory cell populations, and impaired allograft tolerance. Taken together, our findings newly implicate cDC1s in strategies to preserve solid organ allografts and also implicate mitochondrial metabolism of cDC1s as a molecular mechanism to enhance the generation of antigen-specific CD4+CD25+FoxP3+ T cells through TGF-β1.
Samantha L Schroth, Lei Zhang, Rebecca T.L. Jones, Kristofor Glinton, Nikita L. Mani, Hiroyasu Inui, Jesse T. Davidson, Samuel E. Weinberg, Navdeep Chandel, Maria-Luisa Alegre, Edward B. Thorp
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.