Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

CRISPR-mediated detection of Pneumocystis transcripts in bronchoalveolar, oropharyngeal, and serum specimens for Pneumocystis pneumonia diagnosis
Brady M. Youngquist, … , Jay K. Kolls, Tony Y. Hu
Brady M. Youngquist, … , Jay K. Kolls, Tony Y. Hu
Published March 3, 2025
Citation Information: J Clin Invest. 2025;135(8):e177241. https://doi.org/10.1172/JCI177241.
View: Text | PDF
Clinical Research and Public Health Infectious disease Pulmonology

CRISPR-mediated detection of Pneumocystis transcripts in bronchoalveolar, oropharyngeal, and serum specimens for Pneumocystis pneumonia diagnosis

  • Text
  • PDF
Abstract

BACKGROUND Pneumocystis jirovecii pneumonia (PCP) is a leading cause of fungal pneumonia, but its diagnosis primarily relies on invasive bronchoalveolar lavage (BAL) specimens that are difficult to obtain. Oropharyngeal swabs and serum could improve the PCP diagnostic workflow, and we hypothesized that CRISPR could enhance assay sensitivity to allow robust P. jirovecii diagnosis using swabs and serum. Herein, we describe the development of an ultrasensitive RT-PCR–coupled CRISPR assay with high active-infection specificity in infant swabs and adult BAL and serum.METHODS Mouse analyses employed an RT-PCR CRISPR assay to analyze P. murina transcripts in WT and Rag2–/– mouse lung RNA, BAL, and serum at 2-, 4-, and 6-weeks after infection. Human studies used an optimized RT-PCR CRISPR assay to detect P. jirovecii transcripts in infant oropharyngeal swab samples, adult serum, and adult BAL specimens from patients who were infected with P. jirovecii and those who were not.RESULTS The P. murina assays sensitively detected Pneumocystis RNA in the serum of infected mice throughout infection. Oropharyngeal swab CRISPR assay results identified infants infected with P. jirovecii with greater sensitivity (96.3% versus 66.7%) and specificity (100% versus 90.6%) than RT-qPCR compared with mitochondrial large subunit rRNA gene (mtLSU) standard marker, and CRISPR results achieved higher sensitivity than RT-qPCR results (93.3% versus 26.7%) in adult serum specimens.CONCLUSION Since swabs are routinely collected in pediatric patients with pneumonia and serum is easier to obtain than BAL, this assay approach could improve the accuracy and timing of pediatric and adult Pneumocystis diagnosis by achieving specificity for active infection and potentially avoiding the requirement for BAL specimens.FUNDING The work was supported by the NIH (R01AI120033), NHLBI (R35HL139930), the Louisiana Board of Regents Endowed Chairs for Eminent Scholars program, and by research funding provided by National Institute of Allergy and Infectious Diseases (NIAID) (R01AI144168, R01AI175618, R01AI173021). This research was also funded by the NIHR (project 134342) using UK aid from the UK government to support global health research.

Authors

Brady M. Youngquist, Ayanda Trevor Mnguni, Dora Pungan, Rachel PJ Lai, Guixiang Dai, Chun Fai Ng, Amy Samson, Yasmean Abdelgaliel, Christopher J. Lyon, Bo Ning, Shahid Husain, Sean Wasserman, Jay K. Kolls, Tony Y. Hu

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts