Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Expression of the human histocompatibility leukocyte antigen DR3 transgene reduces the severity of demyelination in a murine model of multiple sclerosis.
K M Drescher, … , C S David, M Rodriguez
K M Drescher, … , C S David, M Rodriguez
Published April 15, 1998
Citation Information: J Clin Invest. 1998;101(8):1765-1774. https://doi.org/10.1172/JCI167.
View: Text | PDF
Research Article

Expression of the human histocompatibility leukocyte antigen DR3 transgene reduces the severity of demyelination in a murine model of multiple sclerosis.

  • Text
  • PDF
Abstract

The role of various MHC genes in determining the progression of multiple sclerosis (MS) remains controversial. The HLA-DR3 gene has been associated with benign relapsing MS in some genetic epidemiologic studies, but with disease progression in others. We induced demyelination in highly susceptible B10.M and B10.Q mice expressing the DR3 (HLA-DRB1*0301) transgene to determine directly the effects of a human transgene by infecting them with Theiler's murine encephalomyelitis virus (TMEV). DR3+ mice experienced a dramatic reduction in the extent and severity of demyelination compared with DR3- littermate controls, whereas anti-TMEV antibody titers, delayed-type hypersensitivity responses, and levels of infectious virus, virus antigen, and virus RNA were similar in both groups. To address a possible mechanism of how the human transgene is reducing virus-induced demyelination, we analyzed cytokine expression in the lesions and also determined whether B10.M mice can respond to peptides derived from the DR3 molecule. Intense staining for IFN-gamma and IL-4, T helper (TH) 1 and TH2 cytokines, respectively, was found in the lesions of TMEV-infected DR3- mice but not in the DR3+ transgenic mice at day 21 after infection. DR3 peptides elicited strong proliferative responses in B10.M mice but not in B10.M (DR3+) mice. These experiments are the first to demonstrate that a human class II DR gene can alter the severity of demyelination in an animal model of MS without influencing viral load. These experiments are consistent with a mechanism by which DR3 reduces demyelination by altering the cytokine expression in the lesions, possibly by deleting T cells involved in virus-induced pathology.

Authors

K M Drescher, L T Nguyen, V Taneja, M J Coenen, J L Leibowitz, G Strauss, G J Hammerling, C S David, M Rodriguez

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts