Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.
J L Schwachtgen, … , V Sukhatme, M Braddock
J L Schwachtgen, … , V Sukhatme, M Braddock
Published June 1, 1998
Citation Information: J Clin Invest. 1998;101(11):2540-2549. https://doi.org/10.1172/JCI1404.
View: Text | PDF
Research Article

Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

  • Text
  • PDF
Abstract

The primary response transcription factor, early growth response-1 (Egr-1), is rapidly activated by a variety of extracellular stimuli. Egr-1 binds to a sequence found in the promoters of genes involved in vascular injury, such as PDGF-A and tissue factor, and trans-activates their expression in endothelial cells in response to fluid shear stress. Here we show that egr-1 mRNA is increased after 30 min of flow in human aortic endothelial cell and HeLa cell cultures. Transient transfection of HeLa cells with reporter gene constructs driven by the murine or human egr-1 5' flanking sequence revealed a five- and ninefold induction, respectively, in transcriptional activity after exposure to a shear stress of 5 dynes/cm2 for 3 h. Deletion of sequences in the murine promoter containing two AP1 sites and an inhibitory Egr-1 binding sequence, did not reduce shear stress inducibility. However, progressive deletion of five serum response elements, reduced both the basal promoter activity and its capacity to be activated by shear stress. Further examination indicated that the three upstream serum response elements are predominantly responsible for shear stress activation of the egr-1 promoter. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase-1 inhibited shear stress activation of egr-1. We suggest that egr-1 activation by shear stress involves activation of Elk-1 but not c-jun activity. These data, which are consistent with previous findings for shear mediated signaling via the mitogen-activated protein kinase cascade, now implicate shear modulation of the Egr-1 transcription factor in this pathway.

Authors

J L Schwachtgen, P Houston, C Campbell, V Sukhatme, M Braddock

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts