Technological advances in rapid data acquisition have transformed medical biology into a data mining field, where new data sets are routinely dissected and analyzed by statistical models of ever-increasing complexity. Many hypotheses can be generated and tested within a single large data set, and even small effects can be statistically discriminated from a sea of noise. On the other hand, the development of therapeutic interventions moves at a much slower pace. They are determined from carefully randomized and well-controlled experiments with explicitly stated outcomes as the principal mechanism by which a single hypothesis is tested. In this paradigm, only a small fraction of interventions can be tested, and an even smaller fraction are ultimately deemed therapeutically successful. In this Review, we propose strategies to leverage large-cohort data to inform the selection of targets and the design of randomized trials of novel therapeutics. Ultimately, the incorporation of big data and experimental medicine approaches should aim to reduce the failure rate of clinical trials as well as expedite and lower the cost of drug development.
Eugene Melamud, D. Leland Taylor, Anurag Sethi, Madeleine Cule, Anastasia Baryshnikova, Danish Saleheen, Nick van Bruggen, Garret A. FitzGerald
Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.
Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.