Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome
Shunbun Kita, … , Norikazu Maeda, Iichiro Shimomura
Shunbun Kita, … , Norikazu Maeda, Iichiro Shimomura
Published September 4, 2019
Citation Information: J Clin Invest. 2019;129(10):4041-4049. https://doi.org/10.1172/JCI129193.
View: Text | PDF
Review Series

Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome

  • Text
  • PDF
Abstract

Adipose tissue plays important roles in regulating whole-body energy metabolism through its storage function in white adipocytes and its dissipating function in brown and beige adipocytes. Adipose tissue also produces a variety of secreted factors called adipocytokines, including leptin and adiponectin. Furthermore, recent studies have suggested the important roles of extracellular vesicles of endosomal origin termed exosomes, which are secreted from adipocytes and other cells in adipose tissue and influence whole-body glucose and lipid metabolism. Adiponectin is known to be a pleiotropic organ-protective protein that is exclusively produced by adipocytes and decreased in obesity. Adiponectin accumulates in tissues such as heart, muscle, and vascular endothelium through binding with T-cadherin, a glycosylphosphatidylinositol-anchored (GPI-anchored) cadherin. Recently, adiponectin was found to enhance exosome biogenesis and secretion, leading to a decrease in cellular ceramides, excess of which is known to cause insulin resistance and cardiovascular disease phenotypes. These findings support the hypothesis that adipose tissue metabolism systemically regulates exosome production and whole-body metabolism through exosomes. This review focuses on intra-adipose and interorgan communication by exosomes, adiponectin-stimulated exosome production, and their dysregulation in metabolic diseases.

Authors

Shunbun Kita, Norikazu Maeda, Iichiro Shimomura

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts