Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer
Hiroaki Wakimoto
Hiroaki Wakimoto
Published April 8, 2019
Citation Information: J Clin Invest. 2019;129(5):1833-1835. https://doi.org/10.1172/JCI128742.
View: Text | PDF
Commentary

Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer

  • Text
  • PDF
Abstract

Cancer stem cells sustain propagation of the deadly primary brain cancer glioblastoma. Glioblastoma stem cells (GSCs) characterized by a mesenchymal phenotype are aggressive and resistant to therapies and represent a crucial therapeutic target. In this issue of the JCI, Chen et al. show that the intracellular levels of aldehyde dehydrogenase 1A3 (ALDH1A3), known as a functional marker of mesenchymal GSCs, are regulated posttranslationally by ubiquitin-specific protease 9X–mediated (USP9X-mediated) deubiquitination. Increased expression of USP9X stabilizes ALDH1A3, enabling GSCs to exhibit mesenchymal traits and the malignant phenotype. Thus, the USP9X-ALDH1A3 axis may offer a novel therapeutic target in glioblastoma.

Authors

Hiroaki Wakimoto

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts