Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat.
C A Ecelbarger, … , M A Knepper, J G Verbalis
C A Ecelbarger, … , M A Knepper, J G Verbalis
Published April 15, 1997
Citation Information: J Clin Invest. 1997;99(8):1852-1863. https://doi.org/10.1172/JCI119352.
View: Text | PDF
Research Article

Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat.

  • Text
  • PDF
Abstract

The purpose of this study was to investigate whether escape from vasopressin-induced antidiuresis is associated with altered regulation of any of the known aquaporin water channels. After 4-d pretreatment with 1-deamino-[8-D-arginine]-vasopressin (dDAVP) by osmotic mini-pump, rats were divided into two groups: control (continued dDAVP) and water-loaded (continued dDAVP plus a daily oral water load). A significant increase in urine volume in the water-loaded rats was observed by the second day of water loading, indicating onset of vasopressin escape. The onset of escape coincided temporally with a marked decrease in renal aquaporin-2 protein (measured by semiquantitative immunoblotting), which began at day 2 and fell to 17% of control levels by day 3. In contrast, there was no decrease in the renal expression of aquaporins 1, 3, or 4. The marked suppression of whole kidney aquaporin-2 protein was accompanied by a concomitant suppression of whole kidney aquaporin-2 mRNA levels. Immunocytochemical localization and differential centrifugation studies demonstrated that trafficking of aquaporin-2 to the plasma membrane remained intact during vasopressin escape. The results suggest that escape from vasopressin-induced antidiuresis is attributable, at least in part, to a vasopressin-independent decrease in aquaporin-2 water channel expression in the renal collecting duct.

Authors

C A Ecelbarger, S Nielsen, B R Olson, T Murase, E A Baker, M A Knepper, J G Verbalis

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts