Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes.
G M Dallinga-Thie, … , A J Lusis, T W de Bruin
G M Dallinga-Thie, … , A J Lusis, T W de Bruin
Published March 1, 1997
Citation Information: J Clin Invest. 1997;99(5):953-961. https://doi.org/10.1172/JCI119260.
View: Text | PDF
Research Article

Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes.

  • Text
  • PDF
Abstract

Familial combined hyperlipidemia (FCH) is a common genetic lipid disorder in Western societies. In a recent report (Dallinga-Thie, G.M., X.D. Bu, M. van Linde-Sibenius Trip, J.I. Rotter, A.J. Lusis, and T.W.A. de Bruin. J. Lipid Res., 1996, 36:136-147) we have studied three restriction enzyme polymorphisms: XmnI, and MspI sites 5' of the apo AI gene and SstI site in the 3' untranslated region of exon 4 of the apo CIII gene in 18 FCH pedigrees, including 18 probands, 178 hyperlipidemic relatives, 210 normolipidemic relatives, and 176 spouses. DNA variations in the apo AI-CIII-AIV gene cluster had a modifying effect on plasma triglycerides, LDL cholesterol, and apolipoprotein CIII levels. In this study, combinations of haplotypes were analyzed to further characterize their interactions and effect on the expression of severe hyperlipidemia in FCH subjects. A specific combination of haplotypes with one chromosome carrying the X1M1S2 (1-1-2) haplotype and the other the X2M2S1 haplotype (2-2-1) was significantly more frequent in hyperlipidemic relatives (6%) than in normolipidemic relatives (3%) and spouses (0.5%). Associated with this combination of haplotypes were significantly elevated plasma cholesterol (P < 0.0001), triglycerides (P < 0.0001), and apo CIII (P < 0.001) levels when compared to the wild type combination of haplotypes 1-1-1/1-1-1. The only spouse with this specific combination of haplotypes showed a severe hyperlipidemic phenotype, similar to FCH. Furthermore, nonparametric sibpair linkage analysis revealed significant linkage between these markers in the gene cluster and the FCH phenotype (MspI P = 0.0088, SstI P = 0.044, and XMS haplotype P = 0.037). The present findings confirm that the apo AI-CIII-IV gene cluster contributes to the FCH phenotype, but this contribution is genetically complex. An epistatic interaction between different haplotypes of the gene cluster was demonstrated. The S2 allele on one haplotype was synergistic to the X2M2 allele on the other haplotype in its hyperlipidemic effect. Therefore, two different susceptibility loci exist in the gene cluster, demonstrating the paradigm of complex genetic contribution to FCH.

Authors

G M Dallinga-Thie, M van Linde-Sibenius Trip, J I Rotter, R M Cantor, X Bu, A J Lusis, T W de Bruin

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts