Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness.
P J Malloy, … , R Bouillon, D Feldman
P J Malloy, … , R Bouillon, D Feldman
Published January 15, 1997
Citation Information: J Clin Invest. 1997;99(2):297-304. https://doi.org/10.1172/JCI119158.
View: Text | PDF
Research Article

Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness.

  • Text
  • PDF
Abstract

Mutations in the vitamin D receptor (VDR) result in target organ resistance to 1alpha,25-dihydroxyvitamin D [1,25(OH)2D3], the active form of vitamin D, and cause hereditary 1,25-dihydroxyvitamin D resistant rickets (HVDRR). We analyzed the VDR of a patient who exhibited three genetic diseases: HVDRR, congenital total lipodystrophy, and persistent mullerian duct syndrome. The patient was treated with extremely high dose calcitriol (12.5 microg/d) which normalized serum calcium and improved his rickets. Analysis of [3H]1,25(OH)2D3 binding in the patient's cultured fibroblasts showed normal abundance of VDR with only a slight decrease in binding affinity compared to normal fibroblasts when measured at 0 degrees C. The patient's fibroblasts demonstrated 1,25(OH)2D3-induction of 24-hydroxylase mRNA, but the effective dose was approximately fivefold higher than in control cells. Sequence analysis of the patient's VDR gene uncovered a single point mutation, H305Q. The recreated mutant VDR was transfected into COS-7 cells where it was 5 to 10-fold less responsive to 1,25(OH)2D3 in gene transactivation. The mutant VDR had an eightfold lower affinity for [3H]1,25(OH)2D3 than the normal VDR when measured at 24 degrees C. RFLP demonstrated that the patient was homozygous for the mutation while the parents were heterozygous. In conclusion, we describe a new ligand binding domain mutation in the VDR that causes HVDRR due to decreased affinity for 1,25(OH)2D3 which can be effectively treated with extremely high doses of hormone.

Authors

P J Malloy, T R Eccleshall, C Gross, L Van Maldergem, R Bouillon, D Feldman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts