Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy.
N Ito, Y Kagaya, E O Weinberg, W H Barry, B H Lorell
N Ito, Y Kagaya, E O Weinberg, W H Barry, B H Lorell
View: Text | PDF
Research Article

Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy.

  • Text
  • PDF
Abstract

We compared the effects of endothelin-1 (ET-1) on intracellular pH, intracellular [Ca2+]i, and cell contraction in hypertrophied adult ventricular myocytes from ascending aortic banded rats and age-matched controls. Intracellular pH (pH(i)) was measured in individual myocytes with SNARF-1, and [Ca2+]i was measured with indo-1, simultaneous with cell motion. Experiments were performed at 36 degrees C in myocytes paced at 0.5 Hz in Hepes-buffered solution (pH(o) 7.40) containing 1.2 mM CaCl2. At baseline, calibrated pH(i), diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10 nM ET-1 caused an increase in the amplitude of cell contraction to 163+/-22% of baseline (P < 0.05), associated with intracellular alkalinization (pH(i) + 0.08+/-0.02 U, P < 0.05) and a slight increase in peak systolic [Ca2+]i (104+/-11% of baseline, P < 0.05). In contrast, in the hypertrophied myocytes, exposure to ET-1 did not increase the amplitude of cell contraction or cause intracellular alkalinization (-0.01+/-0.02 U, NS). Similar effects were observed in the hypertrophied and control myocytes in response to exposure to 10 nM angiotensin II. ET-1 also increased the rate of recovery from intracellular acidosis induced by the washout of NH4Cl in the control cells, but did not do so in the hypertrophied cells. In the presence of 10 microM 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits Na+-H+ exchange, ET-1 did not cause a positive inotropic effect or intracellular alkalinization in control cells. The activation of protein kinase C by exposure to phorbol ester caused intracellular alkalinization and it increased the rate of recovery from intracellular acidification induced by an NH4Cl pulse in control cells but not in hypertrophied cells. ET-1, as well as angiotensin II, and phorbol ester, fail to stimulate forward Na+-H+ exchange in adult hypertrophied myocytes. These data suggest a defect in the coupling of protein kinase C signaling with Na+-H+ exchange in adult hypertrophied myocytes.

Authors

N Ito, Y Kagaya, E O Weinberg, W H Barry, B H Lorell

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts