Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Defective regulation of phosphatidylcholine-specific phospholipases C and D in a kindred with Tangier disease. Evidence for the involvement of phosphatidylcholine breakdown in HDL-mediated cholesterol efflux mechanisms.
M Walter, … , U Seedorf, G Assmann
M Walter, … , U Seedorf, G Assmann
Published November 15, 1996
Citation Information: J Clin Invest. 1996;98(10):2315-2323. https://doi.org/10.1172/JCI119043.
View: Text | PDF
Research Article

Defective regulation of phosphatidylcholine-specific phospholipases C and D in a kindred with Tangier disease. Evidence for the involvement of phosphatidylcholine breakdown in HDL-mediated cholesterol efflux mechanisms.

  • Text
  • PDF
Abstract

The negative correlation between coronary heart disease and plasma levels of HDL has been attributed to the ability of HDL to take up cellular cholesterol. The HDL3-induced removal of cellular cholesterol was reported to be impaired in fibroblasts from patients with familial HDL deficiency (Tangier disease, TD). In addition, we have recently shown that HDL3 stimulates the hydrolysis of phosphatidylcholine (PC) in cholesterol-loaded fibroblasts. To investigate whether this cell signaling pathway is involved in cholesterol efflux mechanisms, we compared the HDL3-induced PC hydrolysis in normal fibroblasts and in fibroblasts from a TD kindred, in whom the HDL3- and apolipoprotein A-I (apo A-I)-induced mobilization of cellular cholesterol was found to be reduced by 50%. The HDL3-induced formation of phosphatidic acid (PA) via PC-specific phospholipase D (PC-PLD) was markedly reduced by 60-80% in these cells, whereas the formation of diacylglycerol (DG) via PC-specific phospholipase C (PC-PLC) was two- to threefold enhanced. Defective regulation of PC-PLC and PC-PLD was similarly observed in response to apo A-I and endothelin, but not in response to the receptor-independent stimulation of PC hydrolysis by PMA. A Tangier-like PA and DG formation pattern could be induced in normal cells after preincubation with pertussis toxin, suggesting the involvement of a G-protein. The impaired mobilization of radiolabeled cellular cholesterol in TD cells could completely be overcome by increasing the PA levels in the presence of the PA phosphohydrolase inhibitor propranolol. Conversely, the inhibition of PA formation in the presence of 0.3% butanol as well as the inhibition of DG formation in the presence of the PC-PLC inhibitor D 609 reduced the mobilization of cellular cholesterol both in normal and in TD cells. Our data indicate that the coordinate formation of PA and DG via PC-PLD and PC-PLC is essential for efficient cholesterol efflux. The molecular defect in this TD kindred appears to affect an upstream effector of protein kinase C responsible for the G-protein-dependent regulation of PC-specific phospholipases.

Authors

M Walter, H Reinecke, U Gerdes, J R Nofer, G Höbbel, U Seedorf, G Assmann

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts