We tested the hypothesis that ethanol impairs liver regeneration by abrogating receptor-mediated elevation of cytosolic free calcium ([Ca2+]i). In rats fed for 16 weeks with ethanol, hepatocellular proliferation induced by partial hepatectomy was greatly impaired. Similarly, EGF-induced DNA synthesis was reduced in cultured hepatocytes from ethanol-fed rats. There was no change in the number or affinity of EGF receptors on hepatocytes from ethanol-fed rats. Despite this, EGF-mediated production of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) was lower in hepatocytes from ethanol-fed rats, and the EGF-induced [Ca2+]i transient appeared to be abrogated. When vasopressin or phenylephrine were used as cell surface receptor ligands, hepatocytes cultured from ethanol-fed rats exhibited major reductions in Ins(1,4,5)P3 synthesis. This was associated with greatly truncated [Ca2+]i transients. These changes were not due to an effect on the Ins(1,4,5)P3 receptor on the endoplasmic reticulum or to a decrease in the size of the Ins(1,4,5)P3-mobilizable intracellular Ca+2 store. Further, mobilization of the same Ca2+ store by 2,5-di-tert-butylhydroquinone or thapsigargin restored the ability of hepatocytes from ethanol-fed rats to proliferate when exposed to EGF. It is concluded that chronic ethanol consumption inhibits liver regeneration by a mechanism that is, at least partly, the result of impaired receptor-operated [Ca2+]i signaling due to reduced generation of Ins(1,4,5)P3.
B H Zhang, B P Hornsfield, G C Farrell
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.