Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.
R M Smith, … , L M Chen, B M Babior
R M Smith, … , L M Chen, B M Babior
Published August 15, 1996
Citation Information: J Clin Invest. 1996;98(4):977-983. https://doi.org/10.1172/JCI118882.
View: Text | PDF
Research Article

The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.

  • Text
  • PDF
Abstract

The NADPH-dependent respiratory burst oxidase of human neutrophils catalyzes the reduction of oxygen to superoxide using NADPH as the electron donor and is essential for normal host defenses. To gain insight into the function of the various oxidase subunits that are required for the full expression of catalytic activity, we studied the interactions between the 2',3'-dialdehyde derivative of NADPH (NADPH dialdehyde) and neutrophil cytosol. NADPH dialdehyde treatment of cytosol resulted in the loss of the ability of the cytosol to participate in cell-free oxidase activation; this inactivation was blocked by NADPH but not by NAD, NADP, or GTP. Partial purification of neutrophil cytosol yielded a single peak which could restore the activity lost in cytosol treated with NADPH dialdehyde. This peak contained p67phox but not p47phox or Rac2. Purified recombinant p67phox was similarly able to restore the activity lost in NADPH dialdehyde-treated cytosol and bound [32P]NADPH dialdehyde in a specific fashion. The activity of recombinant p67phox in cell-free oxidase assays was lost on treatment with NADPH dialdehyde. Together, these data suggest p67phox contains the catalytic NADPH-binding site of the leukocyte NADPH oxidase.

Authors

R M Smith, J A Connor, L M Chen, B M Babior

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts