Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Farnesyl analogues inhibit vasoconstriction in animal and human arteries.
J B Roullet, … , C M Roullet, D A McCarron
J B Roullet, … , C M Roullet, D A McCarron
Published May 15, 1996
Citation Information: J Clin Invest. 1996;97(10):2384-2390. https://doi.org/10.1172/JCI118682.
View: Text | PDF
Research Article

Farnesyl analogues inhibit vasoconstriction in animal and human arteries.

  • Text
  • PDF
Abstract

Recent studies have suggested that nonsterol, mevalonate-derived metabolites are implicated in the control of vascular tone and blood pressure. Because of the metabolic importance of farnesyl pyrophosphate, a 15-carbon (C15) intermediate of the cholesterol pathway, the vasoactive properties of the farnesyl motif were investigated. Two farnesyl analogues were used: farnesol, the natural dephosphorylated form of farnesyl pyrophosphate, and N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC), a synthetic mimic of the carboxyl terminus of farnesylated proteins. Both compounds inhibited NE-induced vasoconstriction in rat aortic rings at micromolar concentration. Their action was rapid, dose dependent, and reversible. Shorter (C10) and longer (C20) isoprenols as well as N-acetyl-S-geranyl-L-cysteine (C10) did not inhibit the response to NE. In contrast, N-acetyl-S-geranylgeranyl-L-cysteine (C20), exhibited vasoactive properties similar to AFC. It was further demonstrated that AFC and farnesol inhibited KCl and NaF-induced contractions, suggesting a complex action on Ca2+ channels and G protein-dependent pathways. Finally, the effect of farnesol and AFC on the NE response was reproduced in human resistance arteries. In conclusion, mevalonate-derived farnesyl analogues are potent inhibitors of vasoconstriction. The study suggests that farnesyl cellular availability is an important determinant of vascular tone in animals and humans, and provides a basis for exploring farnesyl metabolism in humans with compromised vascular function as well as for using farnesyl analogues as regulators of arterial tone in vivo.

Authors

J B Roullet, H Xue, J Chapman, P McDougal, C M Roullet, D A McCarron

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts