Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells.
E Ehrenwald, P L Fox
E Ehrenwald, P L Fox
Published February 1, 1996
Citation Information: J Clin Invest. 1996;97(3):884-890. https://doi.org/10.1172/JCI118491.
View: Text | PDF
Research Article

Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells.

  • Text
  • PDF
Abstract

Oxidation of lipids and lipoproteins by macrophages is an important event during atherogenesis. Activation of monocytic cells by zymosan and other agonists results in the release of multiple oxidant species and consequent oxidation of LDL. We now show evidence that ceruloplasmin, a copper-containing acute phase reactant, is secreted by zymosan-activated U937 monocytic cells, and that the protein has an important role in LDL oxidation by these cells. In one approach, ceruloplasmin has been shown to exhibit oxidant activity under the appropriate conditions. Exogenous addition of purified human ceruloplasmin stimulates U937 cell oxidation of LDL to nearly the same extent as activation by zymosan. In contrast to previous cell-free experiments (Ehrenwald, E., G.M. Chisom, and P.L. Fox. 1994. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J. Clin. Invest. 93:1493-1501.) in which ceruloplasmin by itself (in PBS) oxidizes LDL, under the conditions of the current experiments (in RPMI 1640 medium) ceruloplasmin only oxidizes LDL in the presence of cells; the mechanism by which cells overcome the inhibition by medium components has not been ascertained. As further evidence for a role of ceruloplasmin, activation of U937 cells with zymosan induces ceruloplasmin mRNA and ceruloplasmin protein synthesis after a 5-6 h lag that is consistent with that preceding LDL oxidation. Finally, neutralization by a highly specific polyclonal antibody to human ceruloplasmin inhibits LDL oxidation by at least 65%. Moreover, multiple antisense oligodeoxynucleotides targeted to different regions of the ceruloplasmin mRNA block LDL oxidation by up to 95%. The specific action of the antisense oligonucleotides has been verified by showing inhibition of ceruloplasmin synthesis and by the ability of exogenous ceruloplasmin to overcome the inhibition. In summary, these results are consistent with a mechanism in which cell-derived ceruloplasmin participates in oxidation of LDL by U937 monocytic cells. The data also show that cellular factors in addition to ceruloplasmin, possibly active oxygen species and/or lipoxygenases, are essential and act synergistically with ceruloplasmin to oxidize LDL.

Authors

E Ehrenwald, P L Fox

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts