Recent studies suggest that sepsis-induced increase in muscle proteolysis mainly reflects energy-ubiquitin-dependent protein breakdown. We tested the hypothesis that glucocorticoids activate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis. Rats underwent induction of sepsis by cecal ligation and puncture or were sham-operated and muscle protein breakdown rates were measured 16 h later. The glucocorticoid receptor antagonist RU 38486 or vehicle was administered to groups of septic and sham-operated rats. In other experiments, dexamethasone (2.5 or 10 mg/kg) was injected subcutaneously in normal rats. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Energy-dependent proteolysis was determined in incubated muscles depleted of energy with 2-deoxyglucose and 2,4-dinitrophenol. Levels of muscle ubiquitin mRNA and free and conjugated ubiquitin were determined by Northern and Western blot, respectively. RU 38486 inhibited the sepsis-induced increase in total and myofibrillar energy-dependent protein breakdown rates and blunted the increase in ubiquitin mRNA levels and free ubiquitin. Some, but not all, sepsis-induced changes in ubiquitin protein conjugates were inhibited by RU 38486. Injection of dexamethasone in normal rats increased energy-dependent proteolysis and ubiquitin mRNA levels. The results suggest that glucocorticoids regulate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis.
G Tiao, J Fagan, V Roegner, M Lieberman, J J Wang, J E Fischer, P O Hasselgren
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.