Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Intracellular acidification associated with changes in free cytosolic calcium. Evidence for Ca2+/H+ exchange via a plasma membrane Ca(2+)-ATPase in vascular smooth muscle cells.
J T Daugirdas, … , G Flores, D C Battle
J T Daugirdas, … , G Flores, D C Battle
Published April 1, 1995
Citation Information: J Clin Invest. 1995;95(4):1480-1489. https://doi.org/10.1172/JCI117819.
View: Text | PDF
Research Article

Intracellular acidification associated with changes in free cytosolic calcium. Evidence for Ca2+/H+ exchange via a plasma membrane Ca(2+)-ATPase in vascular smooth muscle cells.

  • Text
  • PDF
Abstract

The purpose of this study was to define the mechanism whereby agonists that increase free cytosolic calcium (Cai2+) affect intracellular pH (pHi) in smooth muscle. Rat aortic vascular smooth muscle cells grown on coverslips were loaded with BCECF/AM or fura-2/AM for continuous monitoring of pHi or Cai2+, respectively, in a HCO3-/CO2- containing medium. Recovery from rapid increases in Cai2+ produced by 1 microM angiotensin (Ang) II (delta Cai2+ -229 +/- 43 nM) or 1 microM ionomycin (delta Cai2+ -148 +/- 19 nM) was accompanied by a fall in pHi (delta pHi, -0.064 +/- 0.0085 P < 0.01, and -0.05 +/- 0.012 pH units, P < 0.01, respectively). Neither the fall in pHi nor the rise in Cai2+ elicited by Ang II was prevented by pretreatment with agents which block the action of this agonist on pHi via the stimulation of the Cl/HCo3 exchangers (DIDS, 50 microM) or the Na+/H+ antiporter (EIPA, 50 microM). In the presence of DIDS and EIPA, Ang II produced a fall in pHi (delta pHi, -0.050 +/- 0.014, P < 0.01) and a rise in Cai2+ (delta Ca2+ 252 +/- 157 nM, P < 0.01). That the change in pHi was secondary to changes in Cai2+ was inferred from the finding that, when the rise in Cai2+ elicited by Ang II was prevented by preincubation with a Ca2+ buffer, BAPTA (60 microM), the fall in pHi was abolished as well (delta pHi, 0.0014 +/- 0.0046). The pHi fall produced by Ang II and ionomycin was prevented by cadmium at a very low concentration (20 nM) which is known to inhibit plasma membrane Ca(2+)-ATPase activity (delta pHi -0.002 +/- 0.0006 and -0.0016 pH units, respectively). Cadmium also blunted Cai2+ recovery after Ang II and ionomycin. These findings suggest that the fall in pHi produced by these agents is due to H+ entry coupled to Ca2+ extrusion via the plasma membrane Ca(2+)-ATPase. Our results indicate that agonists that increase Cai2+ cause intracellular acidification as a result of Ca2+/H+ exchange across the plasma membrane. This process appears to be mediated by a plasma membrane Ca(2+)-ATPase which, in the process of extruding Ca2+ from the cell, brings in [H+] and thus acidifies the cell.

Authors

J T Daugirdas, J Arrieta, M Ye, G Flores, D C Battle

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts