Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

17 beta-Hydroxysteroid dehydrogenase type 2: chromosomal assignment and progestin regulation of gene expression in human endometrium.
M L Casey, … , P C MacDonald, S Andersson
M L Casey, … , P C MacDonald, S Andersson
Published November 1, 1994
Citation Information: J Clin Invest. 1994;94(5):2135-2141. https://doi.org/10.1172/JCI117569.
View: Text | PDF
Research Article

17 beta-Hydroxysteroid dehydrogenase type 2: chromosomal assignment and progestin regulation of gene expression in human endometrium.

  • Text
  • PDF
Abstract

The cDNAs for two separate human 17 beta-hydroxysteroid dehydrogenases (17 beta-HSD) have been isolated and sequenced. The well-studied human placental cytosolic 17 beta-HSD (also referred to as estradiol dehydrogenase) preferentially catalyzes the reduction of estrone to estradiol-17 beta and the reduction of the C-20-ketone of progesterone to 20 alpha-dihydroprogesterone. This isoform of the enzyme has been referred to as 17 beta-HSD type 1 and localized to chromosome 17. A second 17 beta-HSD isoform (referred to as type 2) is localized in the endoplasmic reticulum of human trophoblast and is characterized by the preferential oxidation of the C-17 beta-hydroxyl group of C18- and C19-steroids and the C-20 alpha-hydroxyl group of 20 alpha-dihydroprogesterone. In this study, we determined the chromosomal localization of human 17 beta-HSD type 2, the expression of this gene in human endometrium, and the tissue distribution of the mRNA. We found that the human 17 beta-HSD type 2 gene is localized on chromosome 16, 16q24. 17 beta-HSD type 2 mRNA (approximately 1.5 kb) was identified in human endometrial tissues by Northern analysis of total RNA (10 micrograms). The highest levels of 17 beta-HSD type 2 mRNA were found in endometrial tissues obtained during the mid- to late secretory phase of the ovarian cycle (i.e., during the time of high plasma levels of progesterone). 17 beta-HSD type 2 mRNA levels were much greater in glandular epithelium than in the stromal cells isolated from secretory phase endometrium. The levels of 17 beta-HSD type 2 mRNA in secretory phase endometrium were approximately one-tenth that in villous trophoblast tissue from human placenta. We did not detect 17 beta-HSD type 1 mRNA in endometrial tissue by Northern analysis of total (10 micrograms) RNA. These findings are consistent with the view that the progestin-regulated 17 beta-HSD of the glandular epithelium of the human endometrium is primarily, if not exclusively, the product of the 17 beta-HSD type 2 gene. 17 beta-HSD type 2 mRNA was present in human placenta, liver, and small intestine; much smaller amounts, barely detectable by Northern analysis of poly(A)+ RNA, were present in prostate, kidney, pancreas, and colon, but not in heart, brain, skeletal muscle, spleen, thymus, ovary, or testis.

Authors

M L Casey, P C MacDonald, S Andersson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts