Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat.
S K Van Why, … , M Kashgarian, N J Siegel
S K Van Why, … , M Kashgarian, N J Siegel
Published October 1, 1994
Citation Information: J Clin Invest. 1994;94(4):1518-1523. https://doi.org/10.1172/JCI117492.
View: Text | PDF
Research Article

Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat.

  • Text
  • PDF
Abstract

Renal ischemia results in both a profound fall in cellular ATP and a rapid induction of the 70 kD heat-shock protein family, HSP-70. The present studies examined the relationship between cellular ATP and induction of the stress response in renal cortex. Cellular ATP, continuously monitored by in vivo 31P-NMR spectroscopy, was reduced and maintained at specific, stable levels in renal cortex by partial aortic occlusion for 45 min. Activation of heat-shock transcription factor (HSF) was detected by gel retardation assay and transcription was confirmed by Northern analysis. Activation of HSF was not present, and HSP-70 mRNA induction did not occur when ATP levels were maintained above 60% preocclusion (control) levels. Reduction in cortical ATP levels to 35-50% preocclusion values resulted in HSF activation and low-level expression of inducible HSP-70 mRNA. Cellular ATP of 20-25% control values resulted in a greater level of HSF activation and subsequent HSP-70 mRNA elaboration. HSF was activated at the end of 15 min of total occlusion. The studies indicate that a 50% reduction in cellular ATP in the renal cortex must occur before the stress response is detectable, that reduction of ATP below 25% control levels produces a more vigorous response, and that reperfusion is not required for initiation of a heat-shock response in the kidney. Cellular ATP, or the metabolic consequences associated with ATP depletion, may be a threshold factor for initiation of a stress response in the kidney.

Authors

S K Van Why, A S Mann, G Thulin, X H Zhu, M Kashgarian, N J Siegel

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts