Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes.
G M Kammer, … , I U Khan, C J Malemud
G M Kammer, … , I U Khan, C J Malemud
Published July 1, 1994
Citation Information: J Clin Invest. 1994;94(1):422-430. https://doi.org/10.1172/JCI117340.
View: Text | PDF
Research Article

Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes.

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disorder of indeterminate etiology characterized by a dysfunctional cellular immune response. We have previously identified a metabolic disorder of the adenylate cyclase/cAMP/protein kinase A (AC/cAMP/PKA) pathway characterized by impaired cAMP-inducible, PKA-catalyzed protein phosphorylation in intact T lymphocytes from subjects with severe SLE disease activity. Because this metabolic disorder may contribute to abnormal T cell immune effector functions, we tested the hypothesis that impaired PKA-dependent protein phosphorylation is the result of a PKA isozyme deficiency in SLE T lymphocytes. Compared with healthy and rheumatoid arthritis (RA) controls, subjects with severe SLE activity exhibited reduced PKA-catalyzed phosphorylation of proteins in the T lymphocyte plasma membrane where the type I isozyme of PKA (PKA-I) is predominantly localized. Both silver staining and biosynthetic labeling of membrane-associated proteins with [35S]methionine demonstrated that reduced protein phosphorylation was not due to either an altered distribution of or absence of proteins. Moreover, phosphorylation of SLE membrane-associated proteins with the PKA catalytic (C) subunit showed a similar distribution and extent of phosphorylation compared with membrane proteins from healthy T cells, suggesting that SLE T cell membrane proteins could be phosphorylated. Sequential column chromatography of the type I and type II isozymes of PKA (PKA-I, PKA-II) demonstrated a deficiency of PKA-I isozyme activity. Compared with a ratio of PKA-I to PKA-II activity of 4.2:1 in healthy T cells, the activity ratio in T cells from subjects with severe SLE disease activity was 0.99:1 (P = 0.01, SLE versus healthy controls for PKA-I). The deficient PKA-I activity was associated with a significant increase of free C-subunit activity (P = 0.04, SLE versus healthy controls for C-subunit). T cells from subjects with mild/moderate SLE disease activity also exhibited diminished PKA-I activity, yielding a ratio of PKA-I to PKA-II activity of 2.4:1. By contrast, T cells from RA controls possessed increased PKA-I, PKA-II, and free C-subunit activities compared with healthy controls, resulting in a ratio of PKA-I to PKA-II activity of 3.6:1. We conclude that the reduced PKA-catalyzed protein phosphorylation in the plasma membrane of SLE T cells is the result of deficient PKA-I isozyme activity. This is the first identification of a deficiency of PKA activity in SLE T lymphocytes; the deficiency, resulting in diminished protein phosphorylation, may alter cellular homeostasis, contributing to the cellular immune dysfunctions observed in SLE.

Authors

G M Kammer, I U Khan, C J Malemud

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts