Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance.
J Kusari, … , D E Hill, R R Henry
J Kusari, … , D E Hill, R R Henry
Published March 1, 1994
Citation Information: J Clin Invest. 1994;93(3):1156-1162. https://doi.org/10.1172/JCI117068.
View: Text | PDF
Research Article

Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance.

  • Text
  • PDF
Abstract

Particulate and cytosolic protein tyrosine phosphatase (PTPase) activity was measured in skeletal muscle from 15 insulin-sensitive subjects and 5 insulin-resistant nondiabetic subjects, as well as 18 subjects with non-insulin-dependent diabetes mellitus (NIDDM). Approximately 90% of total PTPase activity resided in the particulate fraction. In comparison with lean nondiabetic subjects, particulate PTPase activity was reduced 21% (P < 0.05) and 22% (P < 0.005) in obese nondiabetic and NIDDM subjects, respectively. PTPase1B protein levels were likewise decreased by 38% in NIDDM subjects (P < 0.05). During hyperinsulinemic glucose clamps, glucose disposal rates (GDR) increased approximately sixfold in lean control and twofold in NIDDM subjects, while particulate PTPase activity did not change. However, a strong positive correlation (r = 0.64, P < 0.001) existed between particulate PTPase activity and insulin-stimulated GDR. In five obese NIDDM subjects, weight loss of approximately 10% body wt resulted in a significant and corresponding increase in both particulate PTPase activity and insulin-stimulated GDR. These findings indicate that skeletal muscle particulate PTPase activity and PTPase1B protein content reflect in vivo insulin sensitivity and are reduced in insulin resistant states. We conclude that skeletal muscle PTPase activity is involved in the chronic, but not acute regulation of insulin action, and that the decreased enzyme activity may have a role in the insulin resistance of obesity and NIDDM.

Authors

J Kusari, K A Kenner, K I Suh, D E Hill, R R Henry

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts