Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment.
L C Jefferies, … , C M Carchidi, L E Silberstein
L C Jefferies, … , C M Carchidi, L E Silberstein
Published December 1, 1993
Citation Information: J Clin Invest. 1993;92(6):2821-2833. https://doi.org/10.1172/JCI116902.
View: Text | PDF
Research Article

Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment.

  • Text
  • PDF
Abstract

In the current study, we wished to determine if the V regions encoding the naturally occurring anti-i/I Cold Agglutinins (anti-i/I CA) differ from pathogenic anti-i/I CA that are exclusively encoded by the VH4.21 gene. After EBV transformation of B lymphocytes, we generated one anti-I secreting clone from each of two individuals; clone 4G (individual CM, PBL) and clone Sp1 (individual SC, spleen). Clone 4G expresses a VH3 gene sequence that is 92% homologous to the germline gene WHG26. Clone Sp1 also expresses a VH3 gene that is 98% homologous to the fetally rearranged M85/20P1 gene. Another clone, Sp2 (anti-i specificity), from individual SC is 98% homologous to the germline gene VH4.21. For correlation, we studied anti-i/I CA fractions purified from 15 normal sera and found no or relatively small amounts of 9G4 (VH4.21 related idiotype) reactive IgM. Five cold agglutinin fractions contained large amounts of VH3-encoded IgM (compared to pooled normal IgM) by virtue of their binding to modified protein Staph A (SPA), and absorption of three CA fractions with modified SPA specifically removed anti-i/I binding specificity entirely. Collectively, the data indicate that naturally occurring anti-i/I CA may be encoded to a large extent by non-VH4.21-related genes, and that the VH4.21 gene is not uniquely required for anti-i/I specificity.

Authors

L C Jefferies, C M Carchidi, L E Silberstein

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts