Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Evidence for conductive Cl- pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment.
G Seki, … , K Suzuki, K Kurokawa
G Seki, … , K Suzuki, K Kurokawa
Published September 1, 1993
Citation Information: J Clin Invest. 1993;92(3):1229-1235. https://doi.org/10.1172/JCI116694.
View: Text | PDF
Research Article

Evidence for conductive Cl- pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment.

  • Text
  • PDF
Abstract

The mechanism of Cl- exit was examined in the basolateral membrane of rabbit renal proximal tubule S3 segment with double-barreled, ion-selective microelectrodes. After the basolateral Cl-/HCO3- exchanger was blocked by 2'-disulfonic acid, a bath K+ step from 5 to 20 mM induced 26.6 mV depolarization and 7.7 mM increase in intracellular Cl- activities ([Cl(-)]i). K+ channel blockers, Ba2+, and quinine strongly suppressed both the response in cell membrane potentials (Vb) and in (Cl-)i to the bath K+ step, while Cl- channel blockers, A9C (1 mM) and IAA-94 (0.3 mM) inhibited only the latter response by 49 and 74%, respectively. By contrast, an inhibitor of K(+)-Cl- cotransporter, H74, had no effect on the increase in (Cl-)i to the bath K+ step. Furosemide and the removal of bath Na+ were also ineffective, suggesting that (Cl-)i are sensitive to the cell potential changes. Bath Cl- removal in the presence of quinine induced a depolarization of more than 10 mV and a decrease in (Cl-)i, and IAA-94 inhibited these responses similarly in the bath K+ step experiments. These results indicate that a significant Cl- conductance exists in the basolateral membrane of this segment and functions as a Cl- exit mechanism.

Authors

G Seki, S Taniguchi, S Uwatoko, K Suzuki, K Kurokawa

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts