Hyperthermia causes changes in expression of TGF-beta mRNA and protein in cultured cardiac cells, as well as in the heart in vivo. 12 h after hyperthermia, primary cultures of neonatal rat cardiomyocytes show a two- to threefold decreased expression of TGF-beta mRNAs which returns to control levels by 48 h after heat shock. In cultures of cardiac fibroblasts, expression of TGF-beta mRNAs increases 5-25-fold, 12-48 h after heat shock, while fetal bovine heart endothelial cells show little change in TGF-beta expression after hyperthermia. In each case, mRNAs for TGF-beta s 1, 2, and 3 are regulated similarly. Hearts isolated from rats exposed to hyperthermia show an initial 20-fold decrease in TGF-beta 1 and 3 mRNA levels which return to control levels by 24 h and subsequently are elevated two- to threefold above normal 48-72 h after heat shock; there is little change in TGF-beta 2 mRNA. Expression of immunoreactive TGF-beta 1 and 3 protein, localized intracellularly in myocytes, follows the same pattern as the mRNA expression. By 72 h, some myocytes show hyperstaining for TGF-beta 1. Staining for extracellular TGF-beta 1/3 exhibits the opposite time course, being most intense 3-6 h after heat shock and returning to control levels by 48 h. The increase in TGF-beta s after hyperthermia could play a role in mediating the reported cardioprotective effects of heat shock.
K C Flanders, T S Winokur, M G Holder, M B Sporn
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.