Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Soluble complex of complement increases hydraulic conductivity in single microvessels of rat lung.
S Ishikawa, … , H Tsukada, J Bhattacharya
S Ishikawa, … , H Tsukada, J Bhattacharya
Published January 1, 1993
Citation Information: J Clin Invest. 1993;91(1):103-109. https://doi.org/10.1172/JCI116157.
View: Text | PDF
Research Article

Soluble complex of complement increases hydraulic conductivity in single microvessels of rat lung.

  • Text
  • PDF
Abstract

We determined the effect of sera enriched with the soluble complex of complement (SC5b-9), on hydraulic conductivity (Lp) of single pulmonary venules (diameter 20-30 microns). Sera free of anticoagulants and blood cells were prepared from rat and human blood. Lp were determined by our split drop technique in isolated, blood-perfused lungs prepared from anesthetized rats (2% halothane; Sprague Dawley, 500 g; n = 73). Zymosan-activated (ZAS) and control sera were used for Lp determinations. In ZAS prepared from human serum, SC5b-9 concentration was > 300 micrograms/ml (control: < 1 microgram/ml) as determined by ELISA. At baseline, Lp averaged 3.4 +/- .4 x 10(-7) ml/(cm2.s.cm H2O), but it increased by 217 +/- 32% with undiluted ZAS (P < 0.05). The Lp increase correlated significantly with different ZAS dilutions for rat serum and with SC5b-9 concentration for human serum. Lp did not increase significantly with ZAS prepared from heat-treated sera, C6- and C8-deficient sera; or with ZAS in which SC5b-9 had been depleted by immunoprecipitation. The ZAS-induced increase of Lp was blocked completely by venular preinfusion with the arginine-glycine-aspartic acid (RGD) tripeptide (1 mg/ml, 10 min). We report for the first time that: (a) SC5b-9 increases lung endothelial Lp; and (b) the increase of Lp is attributable to an integrin-dependent mechanism.

Authors

S Ishikawa, H Tsukada, J Bhattacharya

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts