Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation.
J D Morrow, J A Awad, T Kato, K Takahashi, K F Badr, L J Roberts 2nd, R F Burk
J D Morrow, J A Awad, T Kato, K Takahashi, K F Badr, L J Roberts 2nd, R F Burk
View: Text | PDF
Research Article

Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation.

  • Text
  • PDF
Abstract

These studies examine the in vivo formation of a unique series of PGF2-like compounds (F2-isoprostanes) derived from free radical-catalyzed nonenzymatic peroxidation of arachidonic acid. We have previously shown that levels of these compounds increase up to 50-fold in rats administered CCl4. To understand further the formation of these compounds in vivo, we carried out a series of experiments assessing factors influencing their generation. After CCl4 (2 ml/kg) was administered to rats, plasma F2-isoprostanes increased 55-fold by 4 h. Levels declined thereafter, but at 24 h, they were still elevated 21-fold, indicating continued lipid peroxidation. Pretreatment of rats with isonicotinic acid hydrazide and phenobarbital to induce cytochrome P-450 enhanced the production of F2-isoprostanes after CCl4 administration eightfold and fivefold, respectively, whereas inhibition of the cytochrome P-450 system with SKF-525A and 4-methylpyrazole decreased formation of F2-isoprostanes after CCl4 by 55 and 82%, respectively. Further, the glutathione-depleting agents buthionine sulfoximine and phorone augmented the F2-isoprostane response to CCl4 by 22- and 11-fold, respectively. F2-isoprostanes are formed in situ esterified to lipids and, in addition to increases in levels of free F2-isoprostanes in the circulation, levels of F2-isoprostanes esterified to lipids in various organs and plasma also increase sharply during CCl4 poisoning. The measurement of F2-isoprostanes may facilitate investigation of the role of lipid peroxidation in human diseases.

Authors

J D Morrow, J A Awad, T Kato, K Takahashi, K F Badr, L J Roberts 2nd, R F Burk

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts