Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells.
F A Gesek, P A Friedman
F A Gesek, P A Friedman
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):749-758. https://doi.org/10.1172/JCI115947.
View: Text | PDF
Research Article

On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells.

  • Text
  • PDF
Abstract

PTH stimulates transcellular Ca2+ absorption in renal distal convoluted tubules. The effect of PTH on membrane voltage, the ionic basis of the change in voltage, and the relations between voltage and calcium entry were determined on immortalized mouse distal convoluted tubule cells. PTH (10(-8) M) significantly increased 45Ca2+ uptake from basal levels of 2.81 +/- 0.16 to 3.88 +/- 0.19 nmol min-1 mg protein-1. PTH-induced 45Ca2+ uptake was abolished by the dihydropyridine antagonist, nifedipine (10(-5) M). PTH did not affect 22Na+ uptake. Intracellular calcium activity ([Ca2+]i) was measured in cells loaded with fura-2. Control [Ca2+]i averaged 112 +/- 21 nM. PTH increased [Ca2+]i over the range of 10(-11) to 10(-7) M. Maximal stimulation to 326 +/- 31 nM was achieved at 10(-8) M PTH. Resting membrane voltage measured with the potential sensitive dye DiO6(3) averaged -71 +/- 2 mV. PTH hyperpolarized cells by 19 +/- 4 mV. The chloride-channel blocker NPPB prevented PTH-induced hyperpolarization. PTH decreased and NPPB increased intracellular chloride, measured with the fluorescent dye SPQ. Chloride permeability was estimated by measuring the rate of 125I- efflux. PTH increased 125I- efflux and this effect was blocked by NPPB. Clamping voltage with K+/valinomycin; depolarizing membrane voltage by reducing extracellular chloride; or addition of NPPB prevented PTH-induced calcium uptake. In conclusion, PTH increases chloride conductance in distal convoluted tubule cells leading to decreased intracellular chloride activity, membrane hyperpolarization, and increased calcium entry through dihydropyridine-sensitive calcium channels.

Authors

F A Gesek, P A Friedman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts